The Open Mind

Cogito Ergo Sum

Technology, Evolution, and the Fate of Mankind

with 2 comments

Introduction

One could easily argue that human technology is merely a by-product of evolution, or to be more specific, a by-product of natural selection, since any animal possessing a brain and body capable of manipulating their environment to such a high degree is likely to have a higher survival rate than those that do not.  Technology can also be seen as an external evolving feature of the human race, that is, it is changing over time based on environmental pressures that exist, yet it is evolving somewhat independently of our own physical evolution.  Environmental pressures aside, it is clear that our technology has also evolved as a result of our own desire for convenience, entertainment, and pure novelty.  Throughout this post, I plan to discuss our intimate relationship with technology, its evolutionary effects, and also how this may affect the future of our species.

Necessity for Survival?

While technology has provided us with many conveniences, it has also become something that many have come to rely on for their survival (albeit to varying degrees).  Certainly one of our largest problems as a species is our unprecedented reliance on so much technology, not to mention the lack of sustainability for its use.  We have so much infrastructure utilizing enormous amounts of non-renewable fossil fuels, and a host of other interconnected electro-mechanical technologies required for the operation of our civilized world.  We also have medicine and other medical devices that so many depend on, whether to survive an accident, to combat a chronic illness, or to compensate for any number of genetic shortcomings.  Whether it’s a need for prescription glasses, anti-biotics, or a dialysis machine, it is clear that there are a large number of people that couldn’t live without many of these technologies (or would be much less likely to survive without it).

Genetic Change Induced by Technology and Society

I find it interesting to think about how the gene pool has changed as a result of our technology.  There are a considerable number of people living with various life-threatening illnesses, poor eye-sight, obesity, diabetes, sexual dysfunction, etc., due in part to the fact that various synthesized pharmaceuticals and medical advancements have allowed many of these people to live long enough and reproduce.  Not long ago, many people living with these types of impairments would have died young and their genes would have been eradicated.  Now it goes without saying that any advancements we’ve made in terms of genetic engineering or gene therapy, that is, any advancements that actually increase our fitness genetically (and can thus be passed on to future offspring), are not an issue.  Rather, it is all of the other advancements that have merely provided a band-aid approach in order for the genetically less-endowed individuals to survive and reproduce.

Now granted, many of the health problems we encounter in society are largely a result of environmental circumstances (caused by technology or otherwise) transpiring ontogenically as opposed to those which are largely inherited genetically.  There are also a large number of conditions surfacing simply because we’ve increased our life expectancy in such a short amount of time.  Regardless, the gene pool has indeed been affected by a plethora of heritable factors resulting from our technologically pampered society.

It must be said that our gene pool has seen this genetically sub-par influx partly due to the fact that the previous environmental pressures that would have eradicated these genes has been replaced with a technologically savvy super-organism that values human life regardless of how much each life contributes to, or detracts from, the longevity of our species.  Unlike most species, we are at least self-aware, and many of us fully understand the possibility that some of our choices may lead to the extinction of our species (as well as others).  However, I believe that this possibility of extinction hasn’t been taken very seriously and thus there hasn’t been enough invested in evaluating the direction we are heading as a species, let alone the direction we are heading as an entire planet.

Engineered Selection

Now it may be that one day our technology will allow us to understand and manipulate our genome (or that of any other species) such that we can prevent and/or cure any disease or handle any environmental change, effectively eliminating our form of natural selection from the evolutionary equation.  After all, if we could simply modify our gene pool in order to survive any environmental change that is otherwise out of our control, then the gradual course for natural selection and the mutations previously required to make it an effective mechanism, would be replaced by what I would call an “engineered selection”.

We’ve already greatly altered natural selection (relative to other animals) by manipulating our own environmental pressures via technology.  We’ve also created artificial selection (i.e. selective breeding) and utilized this to domesticate various plants and animals, as well as to create breeds possessing traits we find advantageous.  If we actually managed to complement this with a mastery in genetic engineering technology, we would potentially be able to “select” our own species (and the future species we’d become) indefinitely.  The key would be in understanding genetic causal relationships, even if this knowledge required the use of complex genetic evolutionary simulations, supercomputers, etc.

I definitely think that the most significant change for our species lies in this field of genetic engineering, as opposed to any other technological niche.  The possibilities provided by mastering genetic engineering are endless.  We may use it in order to design future offspring with genetic traits that we’re already familiar with (preferably to increase their fitness in the present environment as opposed to superficial motivations), we may add traits from other species (e.g. ability to re-grow limbs, develop wings so we can fly, etc.), or we may even employ some method of integrating communication devices or other deemed “synthetic” technologies into our bodies such that they are biologically grown and repairable, etc.  Humans may use this to genetically engineer brains such that the resulting consciousness has completely different properties, or they may be able to use genetic engineering to create consciousness in a biological “robot”.  If genetically engineered brains result in a more beneficial form of consciousness, higher intelligence, etc., then genetic engineering may end up as a sort of cognitive-evolutionary/technological catalyst thus allowing us to exponentially increase our capacities to solve problems and build ever more advanced technologies.  That is, our enhanced brains and the resulting technology produced would help us to further enhance our brains and technology ad infinitum.  The possibilities are endless if we manage to acquire enough knowledge, acquire the ability to produce engineered DNA sequences, and potentially acquire a way to accelerate the ontogenic evolution of anything produced in order to verify experimental hypotheses/theories in the absence of sufficient computer simulation capabilities.

Fate of Mankind

We are definitely on the cusp of a potentially dramatic evolutionary change for our species.  However, we are also at a very vulnerable stage, for much of our technology has caused our gene pool to regress in terms of physical fitness within a society that could one day be deprived of much of this technology.  Technology has also led to an incredible population explosion, mainly due to agriculture and the fossil-fuel-catalyzed industrial revolution.  This population explosion has helped us in some ways by providing an increase in idea collaboration (thus leading to an exponential increase in technological evolution), but it has also led to much more disastrous effects on the environment including an increased difficulty in sustainability.

Now from an evolutionary perspective, one could argue that currently, our technology is but an extension of ourselves, and our well-developed brains have more than compensated for our physical regression.  While this claim has some truth to it (at the moment anyway), if we lost our ability to mass-produce the technology required for industrialized agriculture, running water, medicine, transportation, sanitation, etc., whether caused by depleting our non-renewable energy sources or even caused by something like a solar-induced electro-magnetic pulse that takes out our power distribution systems (i.e. the entire electrical grid), how many would perish as a result?  In my opinion, the ideal level of evolutionary progression should be such that removing any non-renewable energy source or other vulnerable technology isn’t catastrophic to the survival of our species.  This way our species is less vulnerable to anything that forces us to take a step backwards.  Currently, if we did lose our non-renewable infrastructure, I believe it would be catastrophic and it would be the hunter-gatherers and/or smaller-scale agrarians (i.e. those that are completely off the grid) that would survive, rise up and once again dominate the gene pool as was the case with our ancestors.

Will we survive until an exclusively “engineered selection” is attained?  Or will we simply fall off the evolutionary cusp and potentially extinguish ourselves with the very technology that led to civilization in the first place?  The answer may depend on our level of respect and caution for the technology we so often take for granted.

Advertisements

2 Responses

Subscribe to comments with RSS.

  1. I find it interesting to think about how the gene pool has changed as a result of our technology. There are a considerable number of people living with various life-threatening illnesses, poor eye-sight, obesity, diabetes, sexual dysfunction, etc., due in part to the fact that various synthesized pharmaceuticals and medical advancements have allowed many of these people to live long enough and reproduce.

    You are making the argument for eugenics.

    I disagree with that argument. I think it is seriously mistaken.

    As I see it, the population benefits from wide genetic diversity. What you see as a problem is what has helped build this diversity. The diversity increases the probability that there will be enough members of the population that can survive future problems that may arise. Genetic diversity, not genetic purity, is what is important for evolution.

    Neil Rickert

    July 11, 2013 at 12:02 am

    • Neil,

      You are making the argument for eugenics. I disagree with that argument. I think it is seriously mistaken.

      I am mainly pointing out how eugenics would help to compensate for the detrimental genes that have naturally entered the gene pool due to some of our technologies. Some of these genes are making us less physically fit for the environment, and making us ever more reliant on unsustainable technologies. If eugenics is a viable way to preserve the continuation of our species, as opposed to the alternative of just letting things take their course with no intervention, I prefer to do what is best for our species and to preserve the continuation of human life. How eugenics are specifically implemented is something to critically think about, and where most of the controversy lies. For example, mass genocide is not what I would consider a viable or ethical way of accomplishing this gene pool change. Genetic engineering doesn’t involve killing any human being. Rather, it merely involves changing our genes and the genes of our offspring such that we benefit as a species.

      As I see it, the population benefits from wide genetic diversity.

      I’ve never argued that the population doesn’t benefit from a wide genetic diversity. In fact, I completely agree with you, and have made no such comments that alluded to promoting genetic homogenization.

      What you see as a problem is what has helped build this diversity. The diversity increases the probability that there will be enough members of the population that can survive future problems that may arise.

      There’s a difference between seeing genetic diversity as a problem (your inference of my position), and seeing some genes within that diverse gene pool as being a problem (my actual position on the issue). You are looking at this from an “all or none” approach, and that is simply illogical, short-sighted, and drastically limiting. Not all genes are beneficial, and we may not have any genes within the gene pool that will allow us to survive particular environmental changes. Again I say, I agree that genetic diversity increases our probability of survival, and that is why I’ve not argued against it in this post. You have somehow inferred that for reasons that are unknown to me.

      Genetic diversity, not genetic purity, is what is important for evolution.

      If by “purity”, you mean genetic homogenization, then I agree with you. If by purity, you mean “less disease”, “less vulnerable genes that would otherwise reduce the survival of our species”, then I disagree and would rather say that BOTH diversity and purity are important for evolution.

      Lage

      July 11, 2013 at 10:07 am


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: