“Freedom is Uncertainty”

We are creatures of prediction
Yearning to master an Umwelt
And yet curiosity, like an addiction
Where fixed ways begin to melt
Driven by a fear of the unknown
Seeking novelty within our zone

From whence is freedom born?
Not knowing how the story ends
My own autonomy I have sworn
Sole authorship despite the trends
Thoughts appearing without cause
Predictability should give me pause

The grand illusion of control
When influence is out of sight
Freedom is what defines the soul
No cause relents, try as we might
This decision must be mine
Interconnected, but not divine

From whence is freedom born?
An unconscious realm of ought
Conflicting desires leave us torn
Within a web of neurons caught
Granted by atoms and the void
Causa sui has been destroyed

Choices forged from deep inside
What does the future hold?
Where does this power reside?
To think it’s me is far too bold
I’m free because I cannot see
My freedom lies in uncertainty

Advertisement

The Brain as a Prediction Machine

Over the last year, I’ve been reading a lot about Karl Friston and Andy Clark’s work on the concept of perception and action being mediated by a neurological schema centered on “predictive coding”, what Friston calls “active inference”, the “free energy principle”, and Bayesian inference in general as it applies to neuro-scientific models of perception, attention, and action.  Here’s a few links (Friston here; Clark here, here, and here) to some of their work as it is worth reading for those interested in neural modeling, information theory, and learning more about meta-theories pertaining to how the brain integrates and processes information.

I find it fascinating how this newer research and these concepts relate to and help to bring together some content from several of my previous blog posts, in particular, those that mention the concept of hierarchical neurological hardware and those that mention my own definition of knowledge “as recognized causal patterns that allow us to make successful predictions.”  For those that may be interested, here’s a list of posts I’ve made over the last few years that I think contain some relevant content (in chronological order).

The ideas formulated by Friston and expanded on by Clark center around the brain being (in large part) a prediction generating machine.  This fits in line with my own conclusions about what the brain seems to be doing when it’s acquiring knowledge over time (however limited my reading is on the subject).  Here’s an image of the basic predictive processing schema:

PPschema

The basic Predictive Processing schema (adapted from Lupyan and Clark (2014))

One key element in Friston and Clark’s work (among the work of some others) is the amalgamation of perception and action.  In this framework, perception itself is simply the result of the brain’s highest level predictions of incoming sensory data.  But also important in this framework is that prediction error minimization is accomplished through embodiment itself.  That is to say, their models posit that the brain not only tries to reduce prediction errors by updating its prediction models based on the actual incoming sensory information (with only the error feeding forward to update the models, similar to data compression schema), but the concept of active inference involves the minimization of prediction error through the use of motor outputs.  This could be taken to mean that motor outputs themselves are, in a sense, caused by the brain trying to reduce prediction errors pertaining to predicted sensory input — specifically sensory input that we would say stems from our desires and goals (e.g. desire to fulfill hunger, commuting to work, opening the car door, etc.).

To give a simple example of this model in action, let’s consider an apple resting on a table in front of me.  If I see the apple in front of me and I have a desire to grab it, my brain would not only predict what that apple looks like and how it is perceived over time (and how my arm looks while reaching for it), but it would also predict what it should feel like to reach for the apple.  So if I reach for it based on the somato-sensory prediction and there is some error in that prediction, corroborated by my visual cortex observing my arm moving in some wrong direction, the brain would respond by updating its models that predict what it should feel so that my arm starts moving in the proper direction.  This prediction error minimization is then fine-tuned as I get closer to the apple and can finally grab it.

This embodiment ingrained in the predictive processing models of Friston and Clark can also be well exemplified by the so-called “Outfielder’s Problem”.  In this problem, an outfielder is trying to catch a fly ball.  Now we know that outfielders are highly skilled at doing this rather effectively.  But if we ask the outfielder to merely stand still and watch a batted ball and predict where it will land, their accuracy is generally pretty bad.  So when we think about what strategy the brain takes to accomplish this when moving the body quickly, we begin to see the relevance of active inference and embodiment in the brain’s prediction schema.  The outfielder’s brain employs a brilliant strategy called “optical acceleration cancellation” (OAC).  Here, the well-trained outfielder sees the fly ball, and moves his or her body (while watching the ball) in order to cancel out any optical acceleration observed during the ball’s flight.  If they do this, then they will end up exactly where the ball was going to land, and then they’re able to catch it successfully.

We can imagine fine-grained examples of this active inference during everyday tasks, where I may simply be looking at a picture on my living room wall, and when my brain is predicting how it will look over the span of a few seconds, my head may slightly change its tilt, or direction, or my eyes may slowly move a fraction of a degree this way or that way, however imperceptible to me.  My brain in this case is predicting what the picture on the wall will look like over time and this prediction (according to my understanding of Clark) is identical to what we actually perceive.  One key thing to note here is that the prediction models are not simply updated based on the prediction error that is fed forward through the brain’s neurological hierarchies, but it is also getting some “help” from various motor movements to correct for the errors through action, rather than simply freezing all my muscles and updating the model itself (which may in fact be far less economical for the brain to do).

Another area of research that pertains to this framework, including ways of testing its validity, is that of evolutionary psychology and biology, where one would surmise (if these models are correct) that evolution likely provided our brains with certain hard-wired predictive models and our learning processes over time use these as starting points to produce innate reflexes (such as infant suckling to give a simple example) that allow us to survive long enough to update our models with actual new acquired information.  There are many different facets to this framework and I look forward to reading more about Friston and Clark’s work over the next few years.  I have a feeling that they have hit on something big, something that will help to answer a lot of questions about embodied cognition, perception, and even consciousness itself.

I encourage you to check out the links I provided pertaining to Friston and Clark’s work, to get a taste of the brilliant ideas they’ve been working on.

Darwin’s Big Idea May Be The Biggest Yet

Back in 1859, Charles Darwin released his famous theory of evolution by natural selection whereby inherent variations in the individual members of some population of organisms under consideration would eventually lead to speciation events due to those variations producing a differential in survival and reproductive success and thus leading to the natural selection of some subset of organisms within that population.  As Darwin explained in his On The Origin of Species:

If during the long course of ages and under varying conditions of life, organic beings vary at all in the several parts of their organisation, and I think this cannot be disputed; if there be, owing to the high geometrical powers of increase of each species, at some age, season, or year, a severe struggle for life, and this certainly cannot be disputed; then, considering the infinite complexity of the relations of all organic beings to each other and to their conditions of existence, causing an infinite diversity in structure, constitution, and habits, to be advantageous to them, I think it would be a most extraordinary fact if no variation ever had occurred useful to each being’s own welfare, in the same way as so many variations have occurred useful to man. But if variations useful to any organic being do occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance they will tend to produce offspring similarly characterised. This principle of preservation, I have called, for the sake of brevity, Natural Selection.

While Darwin’s big idea completely transformed biology in terms of it providing (for the first time in history) an incredibly robust explanation for the origin of the diversity of life on this planet, his idea has since inspired other theories pertaining to perhaps the three largest mysteries that humans have ever explored: the origin of life itself (not just the diversity of life after it had begun, which was the intended scope of Darwin’s theory), the origin of the universe (most notably, why the universe is the way it is and not some other way), and also the origin of consciousness.

Origin of Life

In order to solve the first mystery (the origin of life itself), geologists, biologists, and biochemists are searching for plausible models of abiogenesis, whereby the general scheme of these models would involve chemical reactions (pertaining to geology) that would have begun to incorporate certain kinds of energetically favorable organic chemistries such that organic, self-replicating molecules eventually resulted.  Now, where Darwin’s idea of natural selection comes into play with life’s origin is in regard to the origin and evolution of these self-replicating molecules.  First of all, in order for any molecule at all to build up in concentration requires a set of conditions such that the reaction leading to the production of the molecule in question is more favorable than the reverse reaction where the product transforms back into the initial starting materials.  If merely one chemical reaction (out of a countless number of reactions occurring on the early earth) led to a self-replicating product, this would increasingly favor the production of that product, and thus self-replicating molecules themselves would be naturally selected for.  Once one of them was produced, there would have been a cascade effect of exponential growth, at least up to the limit set by the availability of the starting materials and energy sources present.

Now if we assume that at least some subset of these self-replicating molecules (if not all of them) had an imperfect fidelity in the copying process (which is highly likely) and/or underwent even a slight change after replication by reacting with other neighboring molecules (also likely), this would provide them with a means of mutation.  Mutations would inevitably lead to some molecules becoming more effective self-replicators than others, and then evolution through natural selection would take off, eventually leading to modern RNA/DNA.  So not only does Darwin’s big idea account for the evolution of diversity of life on this planet, but the basic underlying principle of natural selection would also account for the origin of self-replicating molecules in the first place, and subsequently the origin of RNA and DNA.

Origin of the Universe

Another grand idea that is gaining heavy traction in cosmology is that of inflationary cosmology, where this theory posits that the early universe underwent a period of rapid expansion, and due to quantum mechanical fluctuations in the microscopically sized inflationary region, seed universes would have resulted with each one having slightly different properties, one of which that would have expanded to be the universe that we live in.  Inflationary cosmology is currently heavily supported because it has led to a number of predictions, many of which that have already been confirmed by observation (it explains many large-scale features of our universe such as its homogeneity, isotropy, flatness, and other features).  What I find most interesting with inflationary theory is that it predicts the existence of a multiverse, whereby we are but one of an extremely large number of other universes (predicted to be on the order of 10^500, if not an infinite number), with each one having slightly different constants and so forth.

Once again, Darwin’s big idea, when applied to inflationary cosmology, would lead to the conclusion that our universe is the way it is because it was naturally selected to be that way.  The fact that its constants are within a very narrow range such that matter can even form, would make perfect sense, because even if an infinite number of universes exist with different constants, we would only expect to find ourselves in one that has the constants within the necessary range in order for matter, let alone life to exist.  So any universe that harbors matter, let alone life, would be naturally selected for against all the other universes that didn’t have the right properties to do so, including for example, universes that had too high or too low of a cosmological constant (such as those that would have instantly collapsed into a Big Crunch or expanded into a heat death far too quickly for any matter or life to have formed), or even universes that didn’t have the proper strong nuclear force to hold atomic nuclei together, or any other number of combinations that wouldn’t work.  So any universe that contains intelligent life capable of even asking the question of their origins, must necessarily have its properties within the required range (often referred to as the anthropic principle).

After our universe formed, the same principle would also apply to each galaxy and each solar system within those galaxies, whereby because variations exist in each galaxy and within each substituent solar system (differential properties analogous to different genes in a gene pool), then only those that have an acceptable range of conditions are capable of harboring life.  With over 10^22 stars in the observable universe (an unfathomably large number), and billions of years to evolve different conditions within each solar system surrounding those many stars, it isn’t surprising that eventually the temperature and other conditions would be acceptable for liquid water and organic chemistries to occur in many of those solar systems.  Even if there was only one life permitting planet per galaxy (on average), that would add up to over 100 billion life permitting planets in the observable universe alone (with many orders of magnitude more life permitting planets in the non-observable universe).  So given enough time, and given some mechanism of variation (in this case, differences in star composition and dynamics), natural selection in a sense can also account for the evolution of some solar systems that do in fact have life permitting conditions in a universe such as our own.

Origin of Consciousness

The last significant mystery I’d like to discuss involves the origin of consciousness.  While there are many current theories pertaining to different aspects of consciousness, and while there has been much research performed in the neurosciences, cognitive sciences, psychology, etc., pertaining to how the brain works and how it correlates to various aspects of the mind and consciousness, the brain sciences (though neuroscience in particular) are in their relative infancy and so there are still many questions that haven’t been answered yet.  One promising theory that has already been shown to account for many aspects of consciousness is Gerald Edelman’s theory of neuronal group selection (NGS) otherwise known as neural Darwinism (ND), which is a large scale theory of brain function.  As one might expect from the name, the mechanism of natural selection is integral to this theory.  In ND, the basic idea consists of three parts as read on the Wiki:

  1. Anatomical connectivity in the brain occurs via selective mechanochemical events that take place epigenetically during development.  This creates a diverse primary neurological repertoire by differential reproduction.
  2. Once structural diversity is established anatomically, a second selective process occurs during postnatal behavioral experience through epigenetic modifications in the strength of synaptic connections between neuronal groups.  This creates a diverse secondary repertoire by differential amplification.
  3. Re-entrant signaling between neuronal groups allows for spatiotemporal continuity in response to real-world interactions.  Edelman argues that thalamocortical and corticocortical re-entrant signaling are critical to generating and maintaining conscious states in mammals.

In a nutshell, the basic differentiated structure of the brain that forms in early development is accomplished through cellular proliferation, migration, distribution, and branching processes that involve selection processes operating on random differences in the adhesion molecules that these processes use to bind one neuronal cell to another.  These crude selection processes result in a rough initial configuration that is for the most part fixed.  However, because there are a diverse number of sets of different hierarchical arrangements of neurons in various neuronal groups, there are bound to be functionally equivalent groups of neurons that are not equivalent in structure, but are all capable of responding to the same types of sensory input.  Because some of these groups should in theory be better than others at responding to some particular type of sensory stimuli, this creates a form of neuronal/synaptic competition in the brain, whereby those groups of neurons that happen to have the best synaptic efficiency for the stimuli in question are naturally selected over the others.  This in turn leads to an increased probability that the same network will respond to similar or identical signals in the future.  Each time this occurs, synaptic strengths increase in the most efficient networks for each particular type of stimuli, and this would account for a relatively quick level of neural plasticity in the brain.

The last aspect of the theory involves what Edelman called re-entrant signaling whereby a sampling of the stimuli from functionally different groups of neurons occurring at the same time leads to a form of self-organizing intelligence.  This would provide a means for explaining how we experience spatiotemporal consistency in our experience of sensory stimuli.  Basically, we would have functionally different parts of the brain, such as various maps in the visual centers that pertain to color versus others that pertain to orientation or shape, that would effectively amalgamate the two (previously segregated) regions such that they can function in parallel and thus correlate with one another producing an amalgamation of the two types of neural maps.  Once this re-entrant signaling is accomplished between higher order or higher complexity maps in the brain, such as those pertaining to value-dependent memory storage centers, language centers, and perhaps back to various sensory cortical regions, this would create an even richer level of synchronization, possibly leading to consciousness (according to the theory).  In all of the aspects of the theory, the natural selection of differentiated neuronal structures, synaptic connections and strengths and eventually that of larger re-entrant connections would be responsible for creating the parallel and correlated processes in the brain believed to be required for consciousness.  There’s been an increasing amount of support for this theory, and more evidence continues to accumulate in support of it.  In any case, it is a brilliant idea and one with a lot of promise in potentially explaining one of the most fundamental aspects of our existence.

Darwin’s Big Idea May Be the Biggest Yet

In my opinion, Darwin’s theory of evolution through natural selection was perhaps the most profound theory ever discovered.  I’d even say that it beats Einstein’s theory of Relativity because of its massive explanatory scope and carryover to other disciplines, such as cosmology, neuroscience, and even the immune system (see Edelman’s Nobel work on the immune system, where he showed how the immune system works through natural selection as well, as opposed to some type of re-programming/learning).  Based on the basic idea of natural selection, we have been able to provide a number of robust explanations pertaining to many aspects of why the universe is likely to be the way it is, how life likely began, how it evolved afterward, and it may possibly be the answer to how life eventually evolved brains capable of being conscious.  It is truly one of the most fascinating principles I’ve ever learned about and I’m honestly awe struck by its beauty, simplicity, and explanatory power.

Neurological Configuration & the Prospects of an Innate Ontology

After a brief discussion on another blog pertaining to whether or not humans possess some kind of an innate ontology or other forms of what I would call innate knowledge, I decided to expand on my reply to that blog post.

While I agree that at least most of our knowledge is acquired through learning, specifically through the acquisition and use of memorized patterns of perception (as this is generally how I would define knowledge), I also believe that there are at least some innate forms of knowledge, including some that would likely result from certain aspects of our brain’s innate neurological configuration and implementation strategy.  This proposed form of innate knowledge would seem to bestow a foundation for later acquiring the bulk of our knowledge that is accomplished through learning.  This foundation would perhaps be best described as a fundamental scaffold of our ontology and thus an innate aspect that our continually developing ontology is based on.

My basic contention is that the hierarchical configuration of neuronal connections in our brains is highly analogous to the hierarchical relationships utilized to produce our conceptualization of reality.  In order for us to make sense of the world, our brains seem to fracture reality into many discrete elements, properties, concepts, propositions, etc., which are all connected to each other through various causal relationships or what some might call semantic hierarchies.  So it seems plausible if not likely that the brain is accomplishing a fundamental aspect of our ontology by our utilizing an innate hardware schema that involves neurological branching.

As the evidence in the neurosciences suggests, it certainly appears that our acquisition of knowledge through learning what those discrete elements, properties, concepts, propositions, etc., are, involves synaptogenesis followed by pruning, modifying, and reshaping a hierarchical neurological configuration, in order to end up with a more specific hierarchical neurological arrangement, and one that more accurately correlates with the reality we are interacting with and learning about through our sensory organs.  Since the specific arrangement that eventually forms couldn’t have been entirely coded for in our DNA (due to it’s extremely high level of complexity and information density), it ultimately had to be fine-tuned to this level of complexity after it’s initial pre-sensory configuration developed.  Nevertheless, the DNA sequences that were naturally selected for to produce the highly capable brains of human beings (as opposed to the DNA that guides the formation of the brain of a much less intelligent animal), clearly have encoded increasingly more effective hardware implementation strategies than our evolutionary ancestors.  These naturally selected neurological strategies seem to control what particular types of causal patterns the brain is theoretically capable of recognizing (including some upper limit of complexity), and they also seem to control how the brain stores and organizes these patterns for later use.  So overall, my contention is that these naturally selected strategies in themselves are a type of knowledge, because they seem to provide the very foundation for our initial ontology.

Based on my understanding, after many of the initial activity-independent mechanisms for neural development have occurred in some region of the developing brain such as cellular differentiation, cellular migration, axon guidance, and some amount of synapse formation, then the activity-dependent mechanisms for neuronal development (such as neural activity caused by the sensory organs in the process of learning), finally begin to modify those synapses and axons into a new hierarchical arrangement.  It is especially worth noting that even though much of the synapse formation during neural development is mediated by activity-dependent mechanisms, such as the aforementioned neural activity produced by the sensory organs during perceptual development and learning, there is also spontaneous neural activity forming many of these synapses even before any sensory input is present, thus contributing to the innate neurological configuration (i.e. that which is formed before any sensation or learning has occurred).

Thus, the subsequent hierarchy formed through neural/sensory stimulation via learning appears to begin from a parent hierarchical starting point based on neural developmental processes that are coded for in our DNA as well as synaptogenic mechanisms involving spontaneous pre-sensory neural activity.  So our brain’s innate (i.e. pre-sensory) configuration likely contributes to our making sense of the world by providing a starting point that reflects the fundamental hierarchical nature of reality that all subsequent knowledge is built off of.  In other words, it seems that if our mature conceptualization of reality involves a very specific type of hierarchy, then an innate/pre-sensory hierarchical schema of neurons would be a plausible if not expected physical foundation for it (see Edelman’s Theory of Neuronal Group Selection within this link for more empirical support of these points).

Additionally, if the brain’s wiring has evolved in order to see dimensions of difference in the world (unique sensory/perceptual patterns that is, such as quantity, colors, sounds, tastes, smells, etc.), then it would make sense that the brain can give any particular pattern an identity by having a unique schema of hardware or unique use of said hardware to perceive such a pattern and distinguish it from other patterns.  After the brain does this, the patterns are then arguably organized by the logical absolutes.  For example, if the hardware scheme or process used to detect a particular pattern “A” exists and all other patterns we perceive have or are given their own unique hardware-based identity (i.e. “not-A” a.k.a. B, C, D, etc.), then the brain would effectively be wired such that pattern “A” = pattern “A” (law of identity), any other pattern which we can call “not-A” does not equal pattern “A” (law of non-contradiction), and any pattern must either be “A” or some other pattern even if brand new, which we can also call “not-A” (law of the excluded middle).  So by the brain giving a pattern a physical identity (i.e. a specific type of hardware configuration in our brain that when activated, represents a detection of one specific pattern), our brains effectively produce the logical absolutes by nature of the brain’s innate wiring strategy which it uses to distinguish one pattern from another.  So although it may be true that there can’t be any patterns stored in the brain until after learning begins (through sensory experience), the fact that the DNA-mediated brain wiring strategy inherently involves eventually giving a particular learned pattern a unique neurological hardware identity to distinguish it from other stored patterns, suggests that the logical absolutes themselves are an innate and implicit property of how the brain stores recognized patterns.

In short, if it is true that any and all forms of reasoning as well as the ability to accumulate knowledge simply requires logic and the recognition of causal patterns, and if the brain’s innate neurological configuration schema provides the starting foundation for both, then it would seem reasonable to conclude that the brain has at least some types of innate knowledge.

Mind, Body, and the Soul: The Quest for an Immaterial Identity

There’s little if any doubt that the brain (the human brain in particular) is the most complex entity or system that we’ve ever encountered in the known universe, and thus it is not surprising that it has allowed humans to reach the top of the food chain and also the ability to manipulate our environment more than any other creature on Earth.  Not only has it provided humans with the necessary means for surviving countless environmental pressures, effectively evolving as a sort of anchor and catalyst for our continued natural selection over time (through learning, language, adaptive technology, etc.), but it has also allowed humans to become aware of themselves, aware of their own consciousness, and aware of their own brains in numerous other ways.  The brain appears to be the first evolved feature of an organism capable of mapping the entire organism (including its interaction with the external environment), and it may even be the case that consciousness later evolved as a result of the brain making maps of itself.  Even beyond these capabilities, the human brain has also been able to map itself in terms of perceptually acquired patterns related to its own activity (i.e. when we study and learn about how our brains work).

It isn’t at all surprising when people marvel over the complexity, beauty and even seemingly surreal qualities of the brain as it produces the qualia of our subjective experience including all of our sensations, emotions and the resulting feelings that ensue.  Some of our human attributes are so seemingly remarkable, that many people have gone so far as to say that at least some of these attributes are either supernatural, supernaturally endowed, and/or are forever exclusive to humans.  For example, some religious people claim that humans alone have some kind of immaterial soul that exists outside of our experiential reality.  Some also believe that humans alone possess free will, are conscious in some way forever exclusive to humans (some have even argued that consciousness in general is an exclusively human trait), and a host of other (perhaps anthropocentric) “human only” attributes, with many of them forever exclusive to humans.  In the interest of philosophical exploration, I’d like to consider and evaluate some of these claims about “exclusively human” attributes.  In particular, I’d like to focus on the non-falsifiable claim of having a soul, with the aid of reason and a couple of thought experiments, although these thought experiments may also shed some light on other purported “exclusively human” attributes (e.g. free will, consciousness, etc.).  For the purposes of simplicity in these thought experiments, I may periodically refer to many or all purported “humanly exclusive” attributes as simply, “H”.  Let’s begin by briefly examining some of the common conceptions of a soul and how it is purported to relate to the physical world.

What is a Soul?

It seems that most people would define a soul to be some incorporeal entity or essence that serves as an immortal aspect or representation of an otherwise mortal/living being.  Furthermore, many people think that souls are something possessed by human beings alone.  There are also people who ascribe souls to non-living entities (such as bodies of water, celestial bodies, wind, etc.), but regardless of these distinctions, for those that believe in souls, there seems to be something in common: souls appear to be non-physical entities correlated, linked, or somehow attached to a particular physical body or system, and are usually believed to give rise to consciousness, a “life force”, animism, or some power of agency.  Additionally, they are often believed to transcend material existence through their involvement in some form of an afterlife.  While it is true that souls and any claims about souls are unfalsifiable and thus are excluded from any kind of empirical investigation, let’s examine some commonly held assumptions and claims about souls and see how they hold up to a more critical examination.

Creation or Correlation of Souls

Many religious people now claim that a person’s life begins at conception (after Science discovered this specific stage of reproduction), and thus it would be reasonable to assume that if they have a soul, that soul is effectively created at conception.  However, some also believe that all souls have co-existed for the same amount of time (perhaps since the dawn of our universe), and that souls are in some sense waiting to be linked to the physical person once they are conceived or come into existence.  Another way of expressing this latter idea is the belief that all souls have existed since some time long ago, but only after the reproductive conception of a person does that soul begin to have a physical correlate or incarnation linked to it.  In any case, the presumed soul is believed to be correlated to a particular physical body (generally presumed to be a “living” body, if not a human body), and this living body has been defined by many to begin its life either at conception (i.e. fertilization), shortly thereafter as an embryo (i.e. once the fertilized egg/cell undergoes division at least once), or once it is considered a fetus (depending on the context for such a definition).  The easiest definition to use for the purposes of this discussion is to define life to begin at conception (i.e. fertilization).

For one, regardless of the definition chosen, it seems difficult to define exactly when the particular developmental stage in question is reached.  Conception could be defined to take place once the spermatozoa’s DNA contents enter the zygote or perhaps not until some threshold has been reached in a particular step of the process afterward (e.g. some time after the individual parent DNA strands have mixed to produce a double-helix daughter strand).  Either way, most proponents of the idea of a human soul seem to assume that a soul is created or at least correlated (if created some time earlier) at the moment of, or not long after, fertilization.  At this point, the soul is believed to be correlated or representative of the now “living” being (which is of course composed of physical materials).

At a most basic level, one could argue, if we knew exactly when a soul was created/correlated with a particular physical body (e.g. a fertilized egg), then by reversing the last step in the process that instigated the creation/correlation of the soul, we should be able to destroy/decorrelate the soul.  Also, if a soul was in fact correlated with an entire fertilized egg, then if we remove even one atom, molecule, etc., would that correlation change?  If not, then it would appear that the soul is not actually correlated with the entire fertilized egg, but rather it is correlated with some higher level aspect or property of it (whatever that may be).

Conservation & Identity of Souls

Assuming a soul is in fact created or correlated with a fertilized egg, what would happen in the case of chimerism, where more than one fertilized egg fuse together in the early stages of embryonic development?  Would this developing individual have two souls?  By the definition or assumptions given earlier, if a soul is correlated with a fertilized egg in some way, and two fertilized eggs (each with their own soul) merge together, then this would indicate one of a few possibilities.  Either two souls merged into one (or one is actually destroyed) which would demonstrate that the number of souls are not conserved (indicating that not all souls are eternal/immortal), or the two souls would co-exist with that one individual and would imply that not all individuals have the same number of souls (some have one, some may have more) and thus souls don’t each have their own unique identity with a particular person, or it would indicate that after the merging of fertilized eggs took place, one of the two souls would detach from or become decorrelated with its physical counterpart, and the remaining soul would get to keep the booty of both fertilized eggs or so to speak.

In the case of identical twins, triplets, etc., a fertilized egg eventually splits, and we are left with the opposite conundrum. It would seem that we would be starting with one soul that eventually splits into two or more, and thus there would be another violation of the conservation of the number of souls.  Alternatively, if the number of souls are indeed conserved, an additional previously existing soul (if this was the case) could become correlated with the second fertilized egg produced. Yet another possibility would be to say that the “twins to be” (i.e. the fertilized egg prior to splitting) has two souls to start with and when the egg splits, the souls are segregated and each pre-destined twin is given their own.

The only way to avoid these implications would be to modify the assumption given earlier, regarding when a soul is created or correlated.  It would have to be defined such that a soul is created or correlated with a physical body some time after an egg is fertilized when it is no longer possible to fuse with another fertilized egg and after it can no longer split into fertilized multiples (i.e. twins, triplets, etc.).  If this is true, then one could no longer say that a fertilized egg necessarily has a soul, for that wouldn’t technically be the case until some time afterward when chimerism or monozygotic multiples were no longer possible.

If people believe in non-physical entities that can’t be seen or in any way extrospectively verified, it’s not much of a stretch to say that they can come up with a way to address these questions or reconcile these issues, with yet more unfalsifiable claims.  Some of these might not even be issues for various believers but I only mention these potential issues to point out the apparent arbitrariness or poorly defined aspects of many claims and assumptions regarding souls. Now let’s look at a few thought experiments to further analyze the concept of a soul and purported “exclusively human” attributes (i.e. “H”) as mentioned in the introduction of this post.

Conservation and Identity of “H”

Thought Experiment # 1: Replace a Neuron With a Non-Biological Analog

What if one neuron in a person’s brain is replaced with a non-biological/artificial version, that is, what if some kind of silicon-based (or other non-carbon-based) analog to a neuron was effectively used to replace a neuron?  We are assuming that this replacement with another version will accomplish the same vital function, that is, the same subjective experience and behavior.  This non-biologically-based neuronal analog may be powered by ATP (Adenosine Triphosphate) and also respond to neurotransmitters with electro-chemical sensors — although it wouldn’t necessarily have to be constrained by the same power or signal transmission media (or mechanisms) as long as it produced the same end result (i.e. the same subjective experience and behavior).  As long as the synthetic neuronal replacement accomplished the same ends, the attributes of the person (i.e. their identity, their beliefs, their actions, etc.) should be unaffected despite any of these changes to their hardware.

Regarding the soul, if souls do in fact exist and they are not physically connected to the body (although people claim that souls are somehow associated with a particular physical body), then it seems reasonable to assume that changing a part of the physical body should have no effect on an individual’s possession of that soul (or any “H” for that matter), especially if the important attributes of the individual, i.e., their beliefs, thoughts, memories, and subsequent actions, etc., were for all practical purposes (if not completely), the same as before.  Even if there were some changes in the important aspects of the individual, say, if there was a slight personality change after some level of brain surgery, could anyone reasonably argue that their presumed soul (or their “H”) was lost as a result?  If physical modifications of the body led to the loss of a soul (or of any elements of “H”), then there would be quite a large number of people (and an increasing number at that) who no longer have souls (or “H”) since many people indeed have had various prosthetic modifications used in or on their bodies (including brain and neural prosthetics) as well as other intervening mediation of body/brain processes (e.g. through medication, transplants, various levels of critical life support, etc.).

For those that think that changing the body’s hardware would somehow disconnect the presumed soul from that person’s body (or eliminate other elements of their “H”), they should consider that this assumption is strongly challenged by the fact that many of the atoms in the human body are replaced (some of them several times over) throughout one’s lifetime anyway.  Despite this drastic biological “hardware” change, where our material selves are constantly being replaced with new atoms from the food that we eat and the air that we breathe (among other sources), we still manage to maintain our memories and our identity simply because the functional arrangements of the brain cells (i.e. neurons and glial cells) which are composed of those atoms are roughly preserved over time and thus the information contained in such arrangements and/or their resulting processes are preserved over time.  We can analogize this important point by thinking about a computer that has had its hardware replaced, albeit in a way that matches or maintains its original physical state, and understand that as a result of this configuration preservation, it also should be able to maintain its original memory, programs and normal functional operation.  One could certainly argue that the computer in question is technically no longer the “same” computer because it no longer has any of the original hardware.  However, the information regarding the computer’s physical state, that is, the specific configuration and states of parts that allow it to function exactly as it did before the hardware replacement, is preserved.  Thus, for all practical purposes in terms of the identity of that computer, it remained the same regardless of the complete hardware change.

This is an important point to consider for those who think that replacing the hardware of the brain (even if limited to a biologically sustained replacement) is either theoretically impossible, or that it would destroy one’s ability to be conscious, to maintain their identity, to maintain their presumed soul, or any presumed element of “H”.  The body naturally performs these hardware changes (through metabolism, respiration, excretion, etc.) all the time and thus the concept of changing hardware while maintaining the critical aspects of an individual is thoroughly demonstrated throughout one’s lifetime.  On top of this, the physical outer boundary that defines our bodies is also arbitrary in the sense that we exchange atoms between our outer surface and the environment around us (e.g. by shedding skin cells, or through friction, molecular desorption/adsorption/absorption, etc.).  The key idea to keep in mind is that these natural hardware changes imply that “we” are not defined specifically by our hardware or some physical boundary with a set number of atoms, but rather “we” are based on how our hardware is arranged/configured (allowing for some variation of configuration states within some finite acceptable range), and the subsequent processes and functions that result from such an arrangement as mediated by the laws of physics.

Is the type of hardware important?  It may be true that changing a human’s hardware to a non-biological version may never be able to accomplish exactly the same subjective experience and behavior that was possible with the biological hardware, however we simply don’t know that this is the case.  It may be that both the type of hardware as well as the configuration are necessary for a body and brain to produce the same subjective experience and behavior.  However, the old adage “there’s more than one way to skin a cat” has been applicable to so many types of technologies and to the means used to accomplish a number of goals.  There are a number of different hardware types and configurations that can be used to accomplish a particular task, even if, after changing the hardware the configuration must also be changed to accomplish a comparable result.  The question becomes, which parts or aspects of the neural process in the brain produces subjective experience and behavior?  If this becomes known, we should be able to learn how biologically-based hardware and its configuration work together in order to accomplish a subjective experience and behavior, and then also learn if non-biologically-based hardware (perhaps with its own particular configuration) can accomplish the same task.  For the purposes of this thought experiment, let’s assume that we can swap out the hardware with a different type, even if, in order to preserve the same subjective experience and behavior, the configuration must be significantly different than it was with the original biologically-based hardware.

So, if we assume that we can replace a neuron with an efficacious artificial version, and still maintain our identity, our consciousness, any soul that might be present, or any element of “H” for that matter, then even if we replace two neurons with artificial versions, we should still have the same individual.  In fact, even if we replace every neuron, perhaps just one neuron at a time, eventually we would be replacing the entire brain with an artificial version, and yet still have the same individual.  This person would now have a completely non-biologically based “brain”.  In theory, their identity would be the same, and they would subjectively experience reality and their selves as usual.  Having gone this far, let’s assume that we replace the rest of the body with an artificial version.  Replacing the rest of the body, one part at a time, should be far less significant a change than replacing the brain, for the rest of the body is far less complex.

It may be true that the body serves as an integral homeostatic frame of reference necessary for establishing some kind of self-object basis of consciousness (e.g. Damasio’s Theory of Consciousness), but as long as our synthetic brain is sending/receiving the appropriate equivalent of sensory/motor information (i.e. through an interoceptive feedback loop among other requirements) from the new artificial body, the model or map of the artificial body’s internal state provided by the synthetic brain should be equivalent.  It should also be noted that the range of conditions necessary for homeostasis in one human body versus another is far narrower and less individualized than the differences found between the brains of two different people.  This supports the idea that the brain is in fact the most important aspect of our individuality, and thus replacing the rest of the body should be significantly easier to accomplish and also less critical a change.  After replacing the rest of the body, we would now have a completely artificial non-biological substrate for our modified “human being”, or what many people would refer to as a “robot”, or a system of “artificial intelligence” with motor capabilities.  This thought experiment seems to suggest at least one of several implications:

  • Some types of robots can possess “H” (e.g. soul, consciousness, free-will, etc.), and thus “H” are not uniquely human, nor are they forever exclusive to humans.
  • Humans lose some or all of their “H” after some threshold of modification has taken place (likely a modification of the brain)
  • “H”, as it is commonly defined at least, does not exist

The first implication listed above would likely be roundly rejected by most people that believe in the existence of “H” for several reasons including the fact that most people see robots as fundamentally different than living systems, they see “H” as only applicable to human beings, and they see a clear distinction between robots and human beings (although the claim that these distinctions exist has been theoretically challenged by this thought experiment).  The second implication sounds quite implausible (even if we assume that “H” exists) as it would seem to be impossible to define when exactly any elements of “H” were lost based on exceeding some seemingly arbitrary threshold of modification.  For example, would the loss of some element of “H” occur only after the last neuron was replaced with an artificial version?  If the loss of “H” did occur after some specific number of neurons were removed (or after the number of neurons that remained fell below some critical minimum quantity), then what if the last neuron removed (which caused this critical threshold to be met) was biologically preserved and later re-installed, thus effectively reversing the last neuronal replacement procedure?  Would the previously lost “H” then return?

Thought Experiment # 2: Replace a Non-Biological Neuronal Analog With a Real Neuron

We could look at this thought experiment (in terms of the second implication) yet another way by simply reversing the order of the thought experiment.  For example, imagine that we made a robot from scratch that was identical to the robot eventually obtained from the aforementioned thought experiment, and then we began to replace its original non-biologically-based neuronal equivalent with actual biologically-based neurons, perhaps even neurons that were each taken from a separate human brain (say, from one or several cadavers) and preserved for such a task.  Even after this, consider that we proceed to replace the rest of the robot’s “body”, again piecewise (say, from one or several cadavers), until it was completely biologically-based to match the human being we began with in the initial thought experiment.  Would or could this robot acquire “H” at some point, or be considered human?  It seems that there would be no biological reason to claim otherwise.

Does “H” exist?  If So, What is “H”?

I’m well aware of how silly some of these hypothetical questions and considerations sound, however I find it valuable to follow the reasoning all the way through in order to help illustrate the degree of plausibility of these particular implications, and the plausibility or validity of “H”.  In the case of the second implication given previously (that humans lose some or all of “H” after some threshold of modification), if there’s no way to define or know when “H” is lost (or gained), then nobody can ever claim with certainty that an individual has lost their “H”, and thus they would have to assume that all elements of “H” have never been lost (if they want to err on the side of, what some may call, ethical or moral caution).  By that rationale, one would find themselves forced to accept the first implication (some types of robots can possess “H”, and thus “H” isn’t unique to humans).  If anyone denies the first two implications, it seems that they are only left with the third option.  The third implication seems to be the most likely (that “H” as previously defined does not exist), however it should be mentioned that even this third implication may be circumvented by realizing that it has an implicit loophole.  There is a possibility that some or all elements and/or aspects of “H” are not exactly what people assume them to be, and therefore “H” may exist in some other sense.  For example, what if we considered particular patterns themselves, i.e., the brain/neuronal configurations, patterns of brain waves, neuronal firing patterns, patterns of electro-chemical signals emanated throughout the body, etc., to be the “immaterial soul” of each individual?  We could look at these patterns as being immaterial if the physical substrate that employs them is irrelevant, or by simply noting that patterns of physical material states are not physical materials in themselves.

This is analogous to the concept that the information contained in a book can be represented on paper, electronically, in multiple languages, etc., and is not reliant on a specific physical medium.  This would mean that one could accept the first implication that robots or “mechanized humans” possess “H”, although it would also necessarily imply that any elements of “H” aren’t actually unique or exclusive to humans as they were initially assumed to be.  One could certainly accept this first implication by noting that the patterns of information (or patterns of something if we don’t want to call it information per se) that comprise the individual were conserved throughout the neuronal (or body) replacement in these thought experiments, and thus the essence or identity of the individual (whether “human” or “robot”) was preserved as well.

Pragmatic Considerations & Final Thoughts

I completely acknowledge that in order for this hypothetical neuronal replacement to be truly accurate in reproducing normal neuronal function (even with just one neuron), above and beyond the potential necessity of both a specific type of hardware as well as configuration (as mentioned earlier), the non-biologically based version would presumably also have to replicate the neuronal plasticity that the brain normally possesses.  In terms of brain plasticity, there are basically four known factors involved with neuronal change, sometimes referred to as the four R’s: regeneration, reconnection, re-weighting, and rewiring.  So clearly, any synthetic neuronal version would likely involve some kind of malleable processing in order to accomplish at least some of these tasks (if not all of them to some degree), as well as some possible nano-self-assembly processes if actual physical rewiring were needed.  The details of what and how this would be accomplished will become better known over time as we learn more about the possible neuronal dynamic mechanisms involved (e.g. neural darwinism or other means of neuronal differential reproduction, connectionism, Hebbian learning, DNA instruction, etc.).

I think that the most important thing to gain from these thought experiments is the realization of the inability or severe difficulty in taking the idea of souls or “H” seriously given the incompatibility between the traditional  conception of a concrete soul or other “H” and the well-established fluidic or continuous nature of the material substrates that they are purportedly correlated with.  That is, all the “things” in this world, including any forms of life (human or not) are constantly undergoing physical transformation and change, and they possess seemingly arbitrary boundaries that are ultimately defined by our own categorical intuitions and subjective perception of reality.  In terms of any person’s quest for “H”, if what one is really looking for is some form of constancy, essence, or identity of some kind in any of the things around us (let alone in human beings), it seems that it is the patterns of information (or perhaps the patterns of energy to be more accurate) as well as the level of complexity or type of patterns that ultimately constitute that essence and identity.  Now if it is reasonable to conclude that the patterns of information or energy that comprise any physical system aren’t equivalent to the physical constituent materials themselves, one could perhaps say that these patterns are a sort of “immaterial” attribute of a set of physical materials.  This seems to be as close to the concept of an immaterial “soul” as a physicalist or materialist could concede exists, since, at the very least it involves a property of continuity and identity which somewhat transcends the physical materials themselves.

An Evolved Consciousness Creating Conscious Evolution

Two Evolutionary Leaps That Changed It All

As I’ve mentioned in a previous post, human biological evolution has led to the emergence of not only consciousness but also a co-existing yet semi-independent cultural evolution (through the unique evolution of the human brain).  This evolutionary leap has allowed us to produce increasingly powerful technologies which in turn have provided a means for circumventing many natural selection pressures that our physical bodies would otherwise be unable to handle.

One of these technologies has been the selective breeding of plants and animals, with this process often referred to as “artificial” selection, as opposed to “natural” selection since human beings have served as an artificial selection pressure (rather than the natural selection pressures of the environment in general).  In the case of our discovery of artificial selection, by choosing which plants and animals to cultivate and raise, we basically just catalyzed the selection process by providing a selection pressure based on the plant or animal traits that we’ve desired most.  By doing so, rather than the selection process taking thousands or even millions of years to produce what we have today (in terms of domesticated plants and animals), it only took a minute fraction of that time since it was mediated through a consciously guided or teleological process, unlike natural selection which operates on randomly differentiating traits leading to differential reproductive success (and thus new genomes and species) over time.

This second evolutionary leap (artificial selection that is) has ultimately paved the way for civilization, as it has increased the landscape of our diet and thus our available options for food, and the resultant agriculture has allowed us to increase our population density such that human collaboration, complex distribution of labor, and ultimately the means for creating new and increasingly complex technologies, have been made possible.  It is largely because of this new evolutionary leap that we’ve been able to reach the current pinnacle of human evolution, the newest and perhaps our last evolutionary leap, or what I’ve previously referred to as “engineered selection”.

With artificial selection, we’ve been able to create new species of plants and animals with very unique and unprecedented traits, however we’ve been limited by the rate of mutations or other genomic differentiating mechanisms that must arise in order to create any new and desirable traits. With engineered selection, we can simply select or engineer the genomic sequences required to produce the desired traits, effectively allowing us to circumvent any genomic differentiation rate limitations and also allowing us instant access to every genomic possibility.

Genetic Engineering Progress & Applications

After a few decades of genetic engineering research, we’ve gained a number of capabilities including but not limited to: producing recombinant DNA, producing transgenic organisms, utilizing in vivo trans-species protein production, and even creating the world’s first synthetic life form (by adding a completely synthetic or human-constructed bacterial genome to a cell containing no DNA).  The plethora of potential applications for genetic engineering (as well as those applications currently in use) has continued to grow as scientists and other creative thinkers are further discovering the power and scope of areas such as mimetics, micro-organism domestication, nano-biomaterials, and many other inter-related niches.

Domestication of Genetically Engineered Micro and Macro-organisms

People have been genetically modifying plants and animals for the same reasons they’ve been artificially selecting them — in order to produce species with more desirable traits. Plants and animals have been genetically engineered to withstand harsher climates, resist harmful herbicides or pesticides (or produce their own pesticides), produce more food or calories per acre (or more nutritious food when all else is equal), etc.  Plants and animals have also been genetically modified for the purposes of “pharming”, where substances that aren’t normally produced by the plant or animal (e.g. pharmacological substances, vaccines, etc.) are expressed, extracted, and then purified.

One of the most compelling applications of genetic engineering within agriculture involves solving the “omnivore’s dilemma”, that is, the prospect of growing unconscious livestock by genetically inhibiting the development of certain parts of the brain so that the animal doesn’t experience any pain or suffering.  There have also been advancements made with in vitro meat, that is, producing cultured meat cells so that no actual animal is needed at all other than some starting cells taken painlessly from live animals (which are then placed into a culture media to grow into larger quantities of meat), however it should be noted that this latter technique doesn’t actually require any genetic modification, although genetic modification may have merit in improving these techniques.  The most important point here is that these methods should decrease the financial and environmental costs of eating meat, and will likely help to solve the ethical issues regarding the inhumane treatment of animals within agriculture.

We’ve now entered a new niche regarding the domestication of species.  As of a few decades ago, we began domesticating micro-organisms. Micro-organisms have been modified and utilized to produce insulin for diabetics as well as other forms of medicine such as vaccines, human growth hormone, etc.  There have also been certain forms of bacteria genetically modified in order to turn cellulose and other plant material directly into hydrocarbon fuels.  This year (2014), E. coli bacteria have been genetically modified in order to turn glucose into pinene (a high energy hydrocarbon used as a rocket fuel).  In 2013, researchers at the University of California, Davis, genetically engineered cyanobacteria (a.k.a. blue-green algae) by adding particular DNA sequences to its genome which coded for specific enzymes such that it can use sunlight and the process of photosynthesis to turn CO2 into 2,3 butanediol (a chemical that can be used as a fuel, or to make paint, solvents, and plastics), thus producing another means of turning our over abundant carbon emissions back into fuel.

On a related note, there are also efforts underway to improve the efficiency of certain hydro-carbon eating bacteria such as A. borkumensis in order to clean up oil spills even more effectively.  Imagine one day having the ability to use genetically engineered bacteria to directly convert carbon emissions back into mass-produced fuel, and if the fuel spills during transport, also having the counterpart capability of cleaning it up most efficiently with another form of genetically engineered bacteria.  These capabilities are being further developed and are only the tip of the iceberg.

In theory, we should also be able to genetically engineer bacteria to decompose many other materials or waste products that ordinarily decompose extremely slowly. If any of these waste products are hazardous, bacteria could be genetically engineered to breakdown or transform the waste products into a safe and stable compound.  With these types of solutions we can make many new materials and have a method in line for their proper disposal (if needed).  Additionally, by utilizing some techniques mentioned in the next section, we can also start making more novel materials that decompose using non-genetically-engineered mechanisms.

It is likely that genetically modified bacteria will continue to provide us with many new types of mass-produced chemicals and products. For those processes that do not work effectively (if at all) in bacterial (i.e. prokaryotic) cells, then eukaryotic cells such as yeast, insect cells, and mammalian cells can often be used as a viable option. All of these genetically engineered domesticated micro-organisms will likely be an invaluable complement to the increasing number of genetically modified plants and animals that are already being produced.

Mimetics

In the case of mimetics, scientists are discovering new ways of creating novel materials using a bottom-up approach at the nano-scale by utilizing some of the self-assembly techniques that natural selection has near-perfected over millions of years.  For example, mollusks form sea shells with incredibly strong structural/mechanical properties by their DNA coding for the synthesis of specific proteins, and those proteins bonding the raw materials of calcium and carbonate into alternating layers until a fully formed shell is produced.  The pearls produced by clams are produced with similar techniques. We could potentially use the same DNA sequence in combination with a scaffold of our choosing such that a similar product is formed with unique geometries, or through genetic engineering techniques, we could modify the DNA sequence so that it performs the same self-assembly with completely different materials (e.g. silicon, platinum, titanium, polymers, etc.).

By combining the capabilities of scaffolding as well as the production of unique genomic sequences, one can further increase the number of possible nanomaterials or nanostructures, although I’m confident that most if not all scaffolding needs could eventually be accomplished by the DNA sequence alone (much like the production of bone, exoskeleton, and other types of structural tissues in animals).  The same principles can be applied by looking at how silk is produced by spiders, how the cochlear hair cells are produced in mammals, etc.  Many of these materials are stronger, lighter, and more defect-free than some of the best human products ever engineered.  By mimicking and modifying these DNA-induced self-assembly techniques, we can produce entirely new materials with unprecedented properties.

If we realize that even the largest plants and animals use these same nano-scale assembly processes to build themselves, it isn’t hard to imagine using these genetic engineering techniques to effectively grow complete macro-scale consumer products.  This may sound incredibly unrealistic with our current capabilities, but imagine one day being able to grow finished products such as clothing, hardware, tools, or even a house.  There are already people working on these capabilities to some degree (for example using 3D printed scaffolding or other scaffolding means and having plant or animal tissue grow around it to form an environmentally integrated bio-structure).  If this is indeed realizable, then perhaps we could find a genetic sequence to produce almost anything we want, even a functional computer or other device.  If nature can use DNA and natural selection to produce macro-scale organisms with brains capable of pattern recognition, consciousness, and computation (and eventually the learned capability of genetic engineering in the case of the human brain), then it seems entirely reasonable that we could eventually engineer DNA sequences to produce things with at least that much complexity, if not far higher complexity, and using a much larger selection of materials.

Other advantages from using such an approach include the enormous energy savings gained by adopting the naturally selected economically efficient process of self-assembly (including less changes in the forms of energy used, and thus less loss) and a reduction in specific product manufacturing infrastructure. That is, whereas we’ve typically made industrial scale machines individually tailored to produce specific components which are later assembled into a final product, by using DNA (and the proteins it codes for) to do the work for us, we will no longer require nearly as much manufacturing capital, for the genetic engineering capital needed to produce any genetic sequence is far more versatile.

Transcending the Human Species

Perhaps the most important application of genetic engineering will be the modification of our own species.  Many of the world’s problems are caused by sudden environmental changes (many of them anthropogenic), and if we can change ourselves and/or other species biologically in order to adapt to these unexpected and sudden environmental changes (or to help prevent them altogether), then the severity of those problems can be reduced or eliminated.  In a sense, we would be selecting our own as well as other species by providing the proper genes to begin with, rather than relying on extremely slow genomic differentiation mechanisms and the greater rates of suffering and loss of life that natural selection normally follows.

Genetic Enhancement of Existing Features

With power over the genome, we may one day be able to genetically increase our life expectancy, for example, by modifying the DNA polymerase-g enzyme in our mitochondria such that they make less errors (i.e. mutations) during DNA replication, by genetically altering telomeres in our nuclear DNA such that they can maintain their length and handle more mitotic divisions, or by finding ways to preserve nuclear DNA, etc. If we also determine which genes lead to certain diseases (as well as any genes that help to prevent them), genetic engineering may be the key to extending the length of our lives perhaps indefinitely.  It may also be the key to improving the quality of that extended life by replacing the techniques we currently use for health and wellness management (including pharmaceuticals) with perhaps the most efficacious form of preventative medicine imaginable.

If we can optimize our brain’s ability to perform neuronal regeneration, reconnection, rewiring, and/or re-weighting based on the genetic instructions that at least partially mediate these processes, this optimization should drastically improve our ability to learn by improving the synaptic encoding and consolidation processes involved in memory and by improving the combinatorial operations leading to higher conceptual complexity.  Thinking along these lines, by increasing the number of pattern recognition modules that develop in the neo-cortex, or by optimizing their configuration (perhaps by increasing the number of hierarchies), our general intelligence would increase as well and would be an excellent complement to an optimized memory.  It seems reasonable to assume that these types of cognitive changes will likely have dramatic effects on how we think and thus will likely affect our philosophical beliefs as well.  Religious beliefs are also likely to change as the psychological comforts provided by certain beliefs may no longer be as effective (if those comforts continue to exist at all), especially as our species continues to phase out non-naturalistic explanations and beliefs as a result of seeing the world from a more objective perspective.

If we are able to manipulate our genetic code in order to improve the mechanisms that underlie learning, then we should also be able to alter our innate abilities through genetic engineering. For example, what if infants could walk immediately after birth (much like a newborn calf)? What if infants had adequate motor skills to produce (at least some) spoken language much more quickly? Infants normally have language acquisition mechanisms which allow them to eventually learn language comprehension and productivity but this typically takes a lot of practice and requires their motor skills to catch up before they can utter a single word that they do in fact understand. Circumventing the learning requirement and the motor skill developmental lag (at least to some degree) would be a phenomenal evolutionary advancement, and this type of innate enhancement could apply to a large number of different physical skills and abilities.

Since DNA ultimately controls the types of sensory receptors we have, we should eventually be able to optimize these as well.  For example, photoreceptors could be modified such that we would be able to see new frequencies of electro-magnetic radiation (perhaps a more optimized range of frequencies if not a larger range altogether).  Mechano-receptors of all types could be modified, for example, to hear a different if not larger range of sound frequencies or to increase tactile sensitivity (i.e. touch).  Olfactory or gustatory receptors could also be modified in order to allow us to smell and taste previously undetectable chemicals.  Basically, all of our sensations could be genetically modified and, when combined with the aforementioned genetic modifications to the brain itself, this would allow us to have greater and more optimized dimensions of perception in our subjective experiences.

Genetic Enhancement of Novel Features

So far I’ve been discussing how we may be able to use genetic engineering to enhance features we already possess, but there’s no reason we can’t consider using the same techniques to add entirely new features to the human repertoire. For example, we could combine certain genes from other animals such that we can re-grow damaged limbs or organs, have gills to breathe underwater, have wings in order to fly, etc.  For that matter, we may even be able to combine certain genes from plants such that we can produce (at least some of) our own chemical energy from the sun, that is, create at least partially photosynthetic human beings.  It is certainly science fiction at the moment, but I wouldn’t discount the possibility of accomplishing this one day after considering all of the other hybrid and transgenic species we’ve created already, and after considering the possible precedent mentioned in the endosymbiotic theory (where an ancient organism may have “absorbed” another to produce energy for it, e.g. mitochondria and chloroplasts in eukaryotic cells).

Above and beyond these possibilities, we could also potentially create advanced cybernetic organisms.  What if we were able to integrate silicon-based electronic devices (or something more biologically compatible if needed) into our bodies such that the body grows or repairs some of these technologies using biological processes?  Perhaps if the body is given the proper diet (i.e. whatever materials are needed in the new technological “organ”) and has the proper genetic code such that the body can properly assimilate those materials to create entirely new “organs” with advanced technological features (e.g. wireless communication or wireless access to an internet database activated by particular thoughts or another physiological command cue), we may eventually be able to get rid of external interface hardware and peripherals altogether.  It is likely that electronic devices will first become integrated into our bodies through surgical implantation in order to work with our body’s current hardware (including the brain), but having the body actually grow and/or repair these devices using DNA instruction would be the next logical step of innovation if it is eventually feasible.

Malleable Human Nature

When people discuss complex issues such as social engineering, sustainability, crime-reduction, etc., it is often mentioned that there is a fundamental barrier between our current societal state and where we want or need to be, and this barrier is none other than human nature itself.  Many people in power have tried to change human behavior with brute force while operating under the false assumption that human beings are analogous to some kind of blank slate that can simply learn or be conditioned to behave in any way without limits. This denial of human nature (whether implicit or explicit) has led to a lot of needless suffering and has also led to the de-synchronization of biological and cultural evolution.

Humans often think that they can adapt to any cultural change, but we often lose sight of the detrimental power that technology and other cultural inventions and changes can have over our physiological and psychological well-being. In a nutshell, the speed of cultural evolution can often make us feel like a fish out of water, perhaps better suited to live in an environment closer to our early human ancestors.  Whatever the case, we must embrace human nature and realize that our efforts to improve society (or ourselves) will only have long term efficacy if we work with human nature rather than against it.  So what can we do if our biological evolution is out-of-sync with our cultural evolution?  And what can we do if we have no choice but to accept human nature, that is, our (often selfish) biologically-driven motivations, tendencies, etc.?  Once again, genetic engineering may provide a solution to many of these previously insoluble problems.  To put it simply, if we can change our genome as desired, then we may be able to not only synchronize our biological and cultural evolution, but also change human nature itself in the process.  This change could not only make us feel better adjusted to the modern cultural environment we’re living in, but it could also incline us to instinctually behave in ways that are more beneficial to each other and to the world as a whole.

It’s often said that we have selfish genes in some sense, that is, many if not all of our selfish behaviors (as well as instinctual behaviors in general) are a reflection of the strategy that genes implement in their vehicles (i.e. our bodies) in order for the genes to maintain themselves and reproduce.  That genes possess this kind of strategy does not require us to assume that they are conscious in any way or have actual goals per se, but rather that natural selection simply selects genes that code for mechanisms which best maintain and spread those very genes.  Natural selection tends toward effective self-replicators, and that’s why “selfish” genes (in large part) cause many of our behaviors.  Improving reproductive fitness and successful reproduction has been the primary result of this strategy and many of the behaviors and motivations that were most advantageous to accomplish this are no longer compatible with modern culture including the long-term goals and greater good that humans often strive for.

Humans no longer exclusively live under the law of the jungle or “survival of the fittest” because our humanistic drives and their cultural reinforcements have expanded our horizons beyond simple self-preservation or a Machiavellian mentality.  Many humans have tried to propagate principles such as honesty, democracy, egalitarianism, immaterialism, sustainability, and altruism around the world, and they are often high-jacked by our often short-sighted sexual and survival-based instinctual motivations to gain sexual mates, power, property, a higher social status, etc.  Changing particular genes should also allow us to change these (now) disadvantageous aspects of human nature and as a result this would completely change how we look at every problem we face. No longer would we have to say “that solution won’t work because it goes against human nature”, or “the unfortunate events in human history tend to recur in one way or another because humans will always…”, but rather we could ask ourselves how we want or need to be and actually make it so by changing our human nature. Indeed, if genetic engineering is used to accomplish this, history would no longer have to repeat itself in the ways that we abhor. It goes without saying that a lot of our behavior can be changed for the better by an appropriate form of environmental conditioning, but for those behaviors that can’t be changed through conditioning, genetic engineering may be the key to success.

To Be or Not To Be?

It seems that we have been given a unique opportunity to use our ever increasing plethora of experiential data and knowledge and combine it with genetic engineering techniques to engineer a social organism that is by far the best adapted to its environment.  Additionally, we may one day find ourselves living in a true global utopia, if the barriers of human nature and the de-synchronization of biological and cultural evolution are overcome, and genetic engineering may be the only way of achieving such a goal.  One extremely important issue that I haven’t mentioned until now is the ethical concerns regarding the continued use and development of genetic engineering technology.  There are obviously concerns over whether or not we should even be experimenting with this technology.  There are many reasonable arguments both for and against using this technology, but I think that as a species, we have been driven to manipulate our environment in any way that we are capable of and this curiosity is a part of human nature itself.  Without genetic engineering, we can’t change any of the negative aspects of human nature but can only let natural selection run its course to modify our species slowly over time (for better or for worse).

If we do accept this technology, there are other concerns such as the fact that there are corporations and interested parties that want to use genetic engineering primarily if not exclusively for profit gain (often at the expense of actual universal benefits for our species) and which implement questionable practices like patenting plant and animal food sources in a potentially monopolized future agricultural market.  Perhaps an even graver concern is the potential to patent genes that become a part of the human genome, and the (at least short term) inequality that would ensue from the wealthier members of society being the primary recipients of genetic human enhancement. Some people may also use genetic engineering to create new bio-warfare weaponry and find other violent or malicious applications.  Some of these practices could threaten certain democratic or other moral principles and we need to be extremely cautious with how we as a society choose to implement and regulate this technology.  There are also numerous issues regarding how these technologies will affect the environment and various ecosystems, whether caused by people with admirable intentions or not.  So it is definitely prudent that we proceed with caution and get the public heavily involved with this cultural change so that our society can move forward as responsibly as possible.

As for the feasibility of the theoretical applications mentioned earlier, it will likely be computer simulation and computing power that catalyze the knowledge base and capability needed to realize many of these goals (by decoding the incredibly complex interactions between genes and the environment) and thus will likely be the primary limiting factor. If genetic engineering also involves expanding the DNA components we have to work with, for example, by expanding our base-four system (i.e. four nucleotides to choose from) to a higher based system through the use of other naturally occurring nucleotides or even the use of UBPs (i.e. “Unnatural Base Pairs”), while still maintaining low rates of base-pair mismatching and while maintaining adequate genetic information processing rates, we may be able to utilize previously inaccessible capabilities by increasing the genetic information density of DNA.  If we can overcome some of the chemical natural selection barriers that were present during abiogenesis and the evolution of DNA (and RNA), and/or if we can change the very structure of DNA itself (as well as the proteins and enzymes that are required for its implementation), we may be able to produce an entirely new type of genetic information storage and processing system, potentially circumventing many of the limitations of DNA in general, and thus creating a vast array of new species (genetically coded by a different nucleic acid or other substance).  This type of “nucleic acid engineering”, if viable, may complement the genetic engineering we’re currently performing on DNA and help us to further accomplish some of the aforementioned goals and applications.

Lastly, while some of the theoretical applications of genetic engineering that I’ve presented in this post may not sound plausible at all to some, I think it’s extremely important and entirely reasonable (based on historical precedent) to avoid underestimating the capabilities of our species.  We may one day be able to transform ourselves into whatever species we desire, effectively taking us from trans-humanism to some perpetual form of conscious evolution and speciation.  What I find most beautiful here is that the evolution of consciousness has actually led to a form of conscious evolution. Hopefully our species will guide this evolution in ways that are most advantageous to our species, and to the entire diversity of life on this planet.

Neuroscience Arms Race & Our Changing World View

At least since the time of Hippocrates, people began to realize that the brain was the physical correlate of consciousness and thought.  Since then, the fields of psychology, neuroscience, and several inter-related fields have emerged.  There have been numerous advancements made within the field of neuroscience during the last decade or so, and in that same time frame there has also been an increased interest in the social, religious, philosophical, and moral implications that have precipitated from such a far-reaching field.  Certainly the medical knowledge we’ve obtained from the neurosciences has been the primary benefit of such research efforts, as we’ve learned quite a bit more about how the brain works, how it is structured, and the ongoing neuropathology that has led to improvements in diagnosing and treating various mental illnesses.  However, it is the other side of neuroscience that I’d like to focus on in this post — the paradigm shift relating to how we are starting to see the world around us (including ourselves), and how this is affecting our goals as well as how to achieve them.

Paradigm Shift of Our World View

Aside from the medical knowledge we are obtaining from the neurosciences, we are also gaining new perspectives on what exactly the “mind” is.  We’ve come a long way in demonstrating that “mental” or “mind” states are correlated with physical brain states, and there is an ever growing plethora of evidence which suggests that these mind states are in fact caused by these brain states.  It should come as no surprise then that all of our thoughts and behaviors are also caused by these physical brain states.  It is because of this scientific realization that society is currently undergoing an important paradigm shift in terms of our world view.

If all of our thoughts and behaviors are mediated by our physical brain states, then many everyday concepts such as thinking, learning, personality, and decision making can take on entirely new meanings.  To illustrate this point, I’d like to briefly mention the well known “nature vs. nurture” debate.  The current consensus among scientists is that people (i.e. their thoughts and behavior) are ultimately products of both their genes and their environment.

Genes & Environment

From a neuroscientific perspective, the genetic component is accounted for by noting that genes have been shown to play a very large role in directing the initial brain wiring schema of an individual during embryological development and through gestation.  During this time, the brain is developing very basic instinctual behavioral “programs” which are physically constituted by vastly complex neural networks, and the body’s developing sensory organs and systems are also connected to particular groups of these neural networks.  These complex neural networks, which have presumably been naturally selected for in order to benefit the survival of the individual, continue being constructed after gestation and throughout the entire ontogenic evolution of the individual (albeit to lesser degrees over time).

As for the environmental component, this can be further split into two parts: the internal and the external environment.  The internal environment within the brain itself, including various chemical concentration gradients partly mediated by random Brownian motion, provides some gene expression constraints as well as some additional guidance to work with the genetic instructions to help guide neuronal growth, migration, and connectivity.  The external environment, consisting of various sensory stimuli, seems to modify this neural construction by providing a form of inputs which may cause the constituent neurons within these neural networks to change their signal strength, change their action potential threshold, and/or modify their connections with particular neurons (among other possible changes).

Causal Constraints

This combination of genetic instructions and environmental interaction and input produces a conscious, thinking, and behaving being through a large number of ongoing and highly complex hardware changes.  It isn’t difficult to imagine why these insights from neuroscience might modify our conventional views of concepts such as thinking, learning, personality, and decision making.  Prior to these developments over the last few decades, the brain was largely seen as a sort of “black box”, with its internal milieu and functional properties remaining mysterious and inaccessible.  From that time and prior to it, for millennia, many people have assumed that our thoughts and behaviors were self-caused or causa sui.  That is, people believed that they themselves (i.e. some causally free “consciousness”, or “soul”, etc.) caused their own thoughts and behavior as opposed to those thoughts and behaviors being ultimately caused by physical processes (e.g. neuronal activity, chemical reactions, etc.).

Neuroscience (as well as biochemistry and its underlying physics) has shed a lot of light on this long-held assumption and, as it stands, the evidence has shown this prior assumption to be false.  The brain is ultimately controlled by the laws of physics since every chemical reaction and neural event that physically produces our thoughts, choices, and behaviors, have never been shown to be causally free from these physically guiding constraints.  I will mention that quantum uncertainty or quantum “randomness” (if ontologically random) does provide some possible freedom from physical determinism.  However, these findings from quantum physics do not provide any support for self-caused thoughts or behaviors.  Rather, it merely shows that those physically constrained thoughts and behaviors may never be completely predictable by physical laws no matter how much data is obtained.  In other words, our thoughts and behaviors are produced by highly predictable (although not necessarily completely predictable) physical laws and constraints as well as some possible random causal factors.

As a result of these physical causal constraints, the conventional perspective of an individual having classical free will has been shattered.  Our traditional views of human attributes including morality, choices, ideology, and even individualism are continuing to change markedly.  Not surprisingly, there are many people uncomfortable with these scientific discoveries including members of various religious and ideological groups that are largely based upon and thus depend on the very presupposition of precepts such as classical free will and moral responsibility.  The evidence that is compiling from the neurosciences is in fact showing that while people are causally responsible for their thoughts, choices, and behavior (i.e. an individual’s thoughts and subsequent behavior are constituents of a causal chain of events), they are not morally responsible in the sense that they can choose to think or behave any differently than they do, for their thoughts and behavior are ultimately governed by physically constrained neural processes.

New World View

Now I’d like to return to what I mentioned earlier and consider how these insights from neuroscience may be drastically modifying how we look at concepts such as thinking, learning, personality, and decision making.  If our brain is operating via these neural network dynamics, then conscious thought appears to be produced by a particular subset of these neural network configurations and processes.  So as we continue to learn how to more directly control or alter these neural network arrangements and processes (above and beyond simply applying electrical potentials to certain neural regions in order to bring memories or other forms of imagery into consciousness, as we’ve done in the past), we should be able to control thought generation from a more “bottom-up” approach.  Neuroscience is definitely heading in this direction, although there is a lot of work to be done before we have any considerable knowledge of and control over such processes.

Likewise, learning seems to consist of a certain type of neural network modification (involving memory), leading to changes in causal pattern recognition (among other things) which results in our ability to more easily achieve our goals over time.  We’ve typically thought of learning as the successful input, retention, and recall of new information, and we have been achieving this “learning” process through the input of environmental stimuli via our sensory organs and systems.  In the future, it may be possible to once again, as with the aforementioned bottom-up thought generation, physically modify our neural networks to directly implant memories and causal pattern recognition information in order to “learn” without any actual sensory input, and/or we may be able to eventually “upload” information in a way that bypasses the typical sensory pathways thus potentially allowing us to catalyze the learning process in unprecedented ways.

If we are one day able to more directly control the neural configurations and processes that lead to specific thoughts as well as learned information, then there is no reason that we won’t be able to modify our personalities, our decision-making abilities and “algorithms”, etc.  In a nutshell, we may be able to modify any aspect of “who” we are in extraordinary ways (whether this is a “good” or “bad” thing is another issue entirely).  As we come to learn more about the genetic components of these neural processes, we may also be able to use various genetic engineering techniques to assist with the necessary neural modifications required to achieve these goals.  The bottom line here is that people are products of their genes and environment, and by manipulating both of those causal constraints in more direct ways (e.g. through the use of neuroscientific techniques), we may be able to achieve previously unattainable abilities and perhaps in a relatively miniscule amount of time.  It goes without saying that these methods will also significantly affect our evolutionary course as a species, allowing us to enter new landscapes through our substantially enhanced ability to adapt.  This may be realized through these methods by finding ways to improve our intelligence, memory, or other cognitive faculties, effectively giving us the ability to engineer or re-engineer our brains as desired.

Neuroscience Arms Race

We can see that increasing our knowledge and capabilities within the neurosciences has the potential for drastic societal changes, some of which are already starting to be realized.  The impact that these fields will have on how we approach the problem of criminal, violent, or otherwise undesirable behavior can not be overstated.  Trying to correct these issues by focusing our efforts on the neural or cognitive substrate that underlie them, as opposed to using less direct and more external means (e.g. social engineering methods) that we’ve been using thus far, may lead to much less expensive solutions as well as solutions that may be realized much, much more quickly.

As with any scientific discovery or subsequent technology produced from it, neuroscience has the power to bestow on us both benefits as well as disadvantages.  I’m reminded of the ground-breaking efforts made within nuclear physics several decades ago, whereby physicists not only gained precious information about subatomic particles (and their binding energies) but also how to release these enormous amounts of energy from nuclear fusion and fission reactions.  It wasn’t long after these breakthrough discoveries were made before they were used by others to create the first atomic bombs.  Likewise, while our increasing knowledge within neuroscience has the power to help society improve by optimizing our brain function and behavior, it can also be used by various entities to manipulate the populace for unethical reasons.

For example, despite the large number of free market proponents who claim that the economy need not be regulated by anything other than rational consumers and their choices of goods and services, corporations have clearly increased their use of marketing strategies that take advantage of many humans’ irrational tendencies (whether it is “buy one get one free” offers, “sales” on items that have artificially raised prices, etc.).  Politicians and other leaders have been using similar tactics by taking advantage of voters’ emotional vulnerabilities on certain controversial issues that serve as nothing more than an ideological distraction in order to reduce or eliminate any awareness or rational analysis of the more pressing issues.

There are already research and development efforts being made by these various entities in order to take advantage of these findings within neuroscience such that they can have greater influence over people’s decisions (whether it relates to consumers’ purchases, votes, etc.).  To give an example of some of these R&D efforts, it is believed that MRI (Magnetic Resonance Imaging) or fMRI (functional Magnetic Resonance Imaging) brain scans may eventually be able to show useful details about a person’s personality or their innate or conditioned tendencies (including compulsive or addictive tendencies, preferences for certain foods or behaviors, etc.).  This kind of capability (if realized) would allow marketers to maximize how many dollars they can squeeze out of each consumer by optimizing their choices of goods and services and how they are advertised. We have already seen how purchases made on the internet, if tracked, begin to personalize the advertisements that we see during our online experience (e.g. if you buy fishing gear online, you may subsequently notice more advertisements and pop-ups for fishing related goods and services).  If possible, the information found using these types of “brain probing” methods could be applied to other areas, including that of political decision making.

While these methods derived from the neurosciences may be beneficial in some cases, for instance, by allowing the consumer more automated access to products that they may need or want (which will likely be a selling point used by these corporations for obtaining consumer approval of such methods), it will also exacerbate unsustainable consumption and other personal or societally destructive tendencies and it is likely to continue to reduce (or eliminate) whatever rational decision making capabilities we still have left.

Final Thoughts

As we can see, neuroscience has the potential to (and is already starting to) completely change the way we look at the world.  Further advancements in these fields will likely redefine many of our goals as well as how to achieve them.  It may also allow us to solve many problems that we face as a species, far beyond simply curing mental illnesses or ailments.  The main question that comes to mind is:  Who will win the neuroscience arms race?  Will it be those humanitarians, scientists, and medical professionals that are striving to accumulate knowledge in order to help solve the problems of individuals and societies as well as to increase their quality of life?  Or will it be the entities that are trying to accumulate similar knowledge in order to take advantage of human weaknesses for the purposes of gaining wealth and power, thus exacerbating the problems we currently face?