The Open Mind

Cogito Ergo Sum

Posts Tagged ‘Brain

Darwin’s Big Idea May Be The Biggest Yet

with 13 comments

Back in 1859, Charles Darwin released his famous theory of evolution by natural selection whereby inherent variations in the individual members of some population of organisms under consideration would eventually lead to speciation events due to those variations producing a differential in survival and reproductive success and thus leading to the natural selection of some subset of organisms within that population.  As Darwin explained in his On The Origin of Species:

If during the long course of ages and under varying conditions of life, organic beings vary at all in the several parts of their organisation, and I think this cannot be disputed; if there be, owing to the high geometrical powers of increase of each species, at some age, season, or year, a severe struggle for life, and this certainly cannot be disputed; then, considering the infinite complexity of the relations of all organic beings to each other and to their conditions of existence, causing an infinite diversity in structure, constitution, and habits, to be advantageous to them, I think it would be a most extraordinary fact if no variation ever had occurred useful to each being’s own welfare, in the same way as so many variations have occurred useful to man. But if variations useful to any organic being do occur, assuredly individuals thus characterised will have the best chance of being preserved in the struggle for life; and from the strong principle of inheritance they will tend to produce offspring similarly characterised. This principle of preservation, I have called, for the sake of brevity, Natural Selection.

While Darwin’s big idea completely transformed biology in terms of it providing (for the first time in history) an incredibly robust explanation for the origin of the diversity of life on this planet, his idea has since inspired other theories pertaining to perhaps the three largest mysteries that humans have ever explored: the origin of life itself (not just the diversity of life after it had begun, which was the intended scope of Darwin’s theory), the origin of the universe (most notably, why the universe is the way it is and not some other way), and also the origin of consciousness.

Origin of Life

In order to solve the first mystery (the origin of life itself), geologists, biologists, and biochemists are searching for plausible models of abiogenesis, whereby the general scheme of these models would involve chemical reactions (pertaining to geology) that would have begun to incorporate certain kinds of energetically favorable organic chemistries such that organic, self-replicating molecules eventually resulted.  Now, where Darwin’s idea of natural selection comes into play with life’s origin is in regard to the origin and evolution of these self-replicating molecules.  First of all, in order for any molecule at all to build up in concentration requires a set of conditions such that the reaction leading to the production of the molecule in question is more favorable than the reverse reaction where the product transforms back into the initial starting materials.  If merely one chemical reaction (out of a countless number of reactions occurring on the early earth) led to a self-replicating product, this would increasingly favor the production of that product, and thus self-replicating molecules themselves would be naturally selected for.  Once one of them was produced, there would have been a cascade effect of exponential growth, at least up to the limit set by the availability of the starting materials and energy sources present.

Now if we assume that at least some subset of these self-replicating molecules (if not all of them) had an imperfect fidelity in the copying process (which is highly likely) and/or underwent even a slight change after replication by reacting with other neighboring molecules (also likely), this would provide them with a means of mutation.  Mutations would inevitably lead to some molecules becoming more effective self-replicators than others, and then evolution through natural selection would take off, eventually leading to modern RNA/DNA.  So not only does Darwin’s big idea account for the evolution of diversity of life on this planet, but the basic underlying principle of natural selection would also account for the origin of self-replicating molecules in the first place, and subsequently the origin of RNA and DNA.

Origin of the Universe

Another grand idea that is gaining heavy traction in cosmology is that of inflationary cosmology, where this theory posits that the early universe underwent a period of rapid expansion, and due to quantum mechanical fluctuations in the microscopically sized inflationary region, seed universes would have resulted with each one having slightly different properties, one of which that would have expanded to be the universe that we live in.  Inflationary cosmology is currently heavily supported because it has led to a number of predictions, many of which that have already been confirmed by observation (it explains many large-scale features of our universe such as its homogeneity, isotropy, flatness, and other features).  What I find most interesting with inflationary theory is that it predicts the existence of a multiverse, whereby we are but one of an extremely large number of other universes (predicted to be on the order of 10^500, if not an infinite number), with each one having slightly different constants and so forth.

Once again, Darwin’s big idea, when applied to inflationary cosmology, would lead to the conclusion that our universe is the way it is because it was naturally selected to be that way.  The fact that its constants are within a very narrow range such that matter can even form, would make perfect sense, because even if an infinite number of universes exist with different constants, we would only expect to find ourselves in one that has the constants within the necessary range in order for matter, let alone life to exist.  So any universe that harbors matter, let alone life, would be naturally selected for against all the other universes that didn’t have the right properties to do so, including for example, universes that had too high or too low of a cosmological constant (such as those that would have instantly collapsed into a Big Crunch or expanded into a heat death far too quickly for any matter or life to have formed), or even universes that didn’t have the proper strong nuclear force to hold atomic nuclei together, or any other number of combinations that wouldn’t work.  So any universe that contains intelligent life capable of even asking the question of their origins, must necessarily have its properties within the required range (often referred to as the anthropic principle).

After our universe formed, the same principle would also apply to each galaxy and each solar system within those galaxies, whereby because variations exist in each galaxy and within each substituent solar system (differential properties analogous to different genes in a gene pool), then only those that have an acceptable range of conditions are capable of harboring life.  With over 10^22 stars in the observable universe (an unfathomably large number), and billions of years to evolve different conditions within each solar system surrounding those many stars, it isn’t surprising that eventually the temperature and other conditions would be acceptable for liquid water and organic chemistries to occur in many of those solar systems.  Even if there was only one life permitting planet per galaxy (on average), that would add up to over 100 billion life permitting planets in the observable universe alone (with many orders of magnitude more life permitting planets in the non-observable universe).  So given enough time, and given some mechanism of variation (in this case, differences in star composition and dynamics), natural selection in a sense can also account for the evolution of some solar systems that do in fact have life permitting conditions in a universe such as our own.

Origin of Consciousness

The last significant mystery I’d like to discuss involves the origin of consciousness.  While there are many current theories pertaining to different aspects of consciousness, and while there has been much research performed in the neurosciences, cognitive sciences, psychology, etc., pertaining to how the brain works and how it correlates to various aspects of the mind and consciousness, the brain sciences (though neuroscience in particular) are in their relative infancy and so there are still many questions that haven’t been answered yet.  One promising theory that has already been shown to account for many aspects of consciousness is Gerald Edelman’s theory of neuronal group selection (NGS) otherwise known as neural Darwinism (ND), which is a large scale theory of brain function.  As one might expect from the name, the mechanism of natural selection is integral to this theory.  In ND, the basic idea consists of three parts as read on the Wiki:

  1. Anatomical connectivity in the brain occurs via selective mechanochemical events that take place epigenetically during development.  This creates a diverse primary neurological repertoire by differential reproduction.
  2. Once structural diversity is established anatomically, a second selective process occurs during postnatal behavioral experience through epigenetic modifications in the strength of synaptic connections between neuronal groups.  This creates a diverse secondary repertoire by differential amplification.
  3. Re-entrant signaling between neuronal groups allows for spatiotemporal continuity in response to real-world interactions.  Edelman argues that thalamocortical and corticocortical re-entrant signaling are critical to generating and maintaining conscious states in mammals.

In a nutshell, the basic differentiated structure of the brain that forms in early development is accomplished through cellular proliferation, migration, distribution, and branching processes that involve selection processes operating on random differences in the adhesion molecules that these processes use to bind one neuronal cell to another.  These crude selection processes result in a rough initial configuration that is for the most part fixed.  However, because there are a diverse number of sets of different hierarchical arrangements of neurons in various neuronal groups, there are bound to be functionally equivalent groups of neurons that are not equivalent in structure, but are all capable of responding to the same types of sensory input.  Because some of these groups should in theory be better than others at responding to some particular type of sensory stimuli, this creates a form of neuronal/synaptic competition in the brain, whereby those groups of neurons that happen to have the best synaptic efficiency for the stimuli in question are naturally selected over the others.  This in turn leads to an increased probability that the same network will respond to similar or identical signals in the future.  Each time this occurs, synaptic strengths increase in the most efficient networks for each particular type of stimuli, and this would account for a relatively quick level of neural plasticity in the brain.

The last aspect of the theory involves what Edelman called re-entrant signaling whereby a sampling of the stimuli from functionally different groups of neurons occurring at the same time leads to a form of self-organizing intelligence.  This would provide a means for explaining how we experience spatiotemporal consistency in our experience of sensory stimuli.  Basically, we would have functionally different parts of the brain, such as various maps in the visual centers that pertain to color versus others that pertain to orientation or shape, that would effectively amalgamate the two (previously segregated) regions such that they can function in parallel and thus correlate with one another producing an amalgamation of the two types of neural maps.  Once this re-entrant signaling is accomplished between higher order or higher complexity maps in the brain, such as those pertaining to value-dependent memory storage centers, language centers, and perhaps back to various sensory cortical regions, this would create an even richer level of synchronization, possibly leading to consciousness (according to the theory).  In all of the aspects of the theory, the natural selection of differentiated neuronal structures, synaptic connections and strengths and eventually that of larger re-entrant connections would be responsible for creating the parallel and correlated processes in the brain believed to be required for consciousness.  There’s been an increasing amount of support for this theory, and more evidence continues to accumulate in support of it.  In any case, it is a brilliant idea and one with a lot of promise in potentially explaining one of the most fundamental aspects of our existence.

Darwin’s Big Idea May Be the Biggest Yet

In my opinion, Darwin’s theory of evolution through natural selection was perhaps the most profound theory ever discovered.  I’d even say that it beats Einstein’s theory of Relativity because of its massive explanatory scope and carryover to other disciplines, such as cosmology, neuroscience, and even the immune system (see Edelman’s Nobel work on the immune system, where he showed how the immune system works through natural selection as well, as opposed to some type of re-programming/learning).  Based on the basic idea of natural selection, we have been able to provide a number of robust explanations pertaining to many aspects of why the universe is likely to be the way it is, how life likely began, how it evolved afterward, and it may possibly be the answer to how life eventually evolved brains capable of being conscious.  It is truly one of the most fascinating principles I’ve ever learned about and I’m honestly awe struck by its beauty, simplicity, and explanatory power.

Advertisements

A Scientific Perspective of the Arts

with 2 comments

Science and the arts have long been regarded as mutually exclusive domains, where many see artistic expression as something that science can’t explain or reduce in any way, or as something that just shouldn’t be explored by any kind of scientific inquiry.  To put it another way, many people have thought it impossible for there to ever be any kind of a “science of the arts”.  The way I see it, science isn’t something that can be excluded from any domain at all, because we apply science in a very general way every time we learn or conceive of new ideas, experiment with them, and observe the results to determine if we should modify our beliefs based on those experiences.  Whenever we pose a question about anything we experience, in the attempt to learn something new and gain a better understanding about those experiences, a scientific approach (based on reason and the senses) is the only demonstrably reliable way we’ve ever been able to arrive at any kind of meaningful answer.  The arts are no exception to this, and in fact, many questions that have been asked about the arts and aesthetics in general have not only been answered by an application of the aforementioned general scientific reasoning that we use every day, but have in fact also been answered within many specific well-established branches of science.

Technology & The Scientific Method

It seems to me that the sciences and the various rewards we’ve reaped from them have influenced art in a number of ways and even facilitated new variations of artistic expression.  For example, science has been applied to create the very technologies used in producing art.  The various technologies created through the application of science have been used to produce new sounds (and new combinations thereof), new colors (and new color gradients), new shapes, and various other novel visual effects.  We’ve even used them to produce new tastes and smells (in the culinary arts for example).  They’ve also been used to create entirely new media through which art is exemplified.  So in a large number of ways, any kind of art has been dependent on science in some way or another — even by simply applying the scientific method by hypothesizing a way to express art in some way, even through a new medium or with a new technique, where the artist experiments with that medium or technique to see if it is satisfactory, and then modifies their hypothesis if needed until the artist obtains the desired result for what they’re trying to express (whether through simple trial and error or what-have-you).

Evolutionary Factors Influencing Aesthetic Preferences

Then we have the questions that pertain to whether or not aesthetic preferences are solely subjective and individualistic, or if they are also objective in some ways.  Some of these questions have in fact been explored within the fields of evolutionary biology and psychology (and within the field of psychology in general), where it is well known that humans find certain types of perceptions pleasurable, such as environments and objects that are conducive to our survival.  For example, the majority of people enjoy visually perceiving an abundance of food, fresh water and plush vegetation, healthy social relationships (including sex) and various emotions, etc. There are also various sounds, smells, tastes, and even tactile sensations that we’ve evolved to find pleasurable — such as the sound of laughter, flowing water, or rain, the taste of salt, fat, and sugar, the smell of various foods and plants, or the tactile sensation of sexual stimulation (to give but a few examples).  So it’s not surprising that many forms of art can appeal to the majority of people by employing these kinds of objects and environments within them, especially in cases where these sources of pleasurable sensations are artificially amplified into supernormal stimuli, thus producing unprecedented levels of pleasure not previously attainable through the natural environment that our senses evolved within.

Additionally, there are certain emotions that we’ve evolved to express as well as understand simply because they increase our chances of survival within our evolutionary niche, and thus artistic representations of these types of universal human emotions will also likely play a substantial role in our aesthetic preferences.  Even the evolved traits of empathy and sympathy, which are quite advantageous to a social species such as our own (due to them reinforcing cooperation and reciprocal altruism among other benefits), are employed by those that are perceiving and appreciating these artistic expressions.

Another possible evolutionary component related to our appreciation of art has to do with sexual selection.  Often times, particular forms of art are appreciated, not only because of the emotions it evokes in the recipient or person perceiving it, but also when they include clever uses of metaphor, allegory, poetry, and other components that often demonstrate significant levels of intelligence or brilliance in the artist that produced them.  In terms of our evolutionary history, having these kinds of skills and displays of intelligence would be attractive to prospective sexual mates for a number of reasons including the fact that they demonstrate that the artist has a surplus of mental capacity to solve more complex problems that are far beyond those they’d typically encounter day to day.  So this can provide a rather unique way of demonstrating particular aspects of their fitness to survive as well as their abilities to protect any future offspring.

Artistic expression (as well as other displays of intelligence and surplus mental capacity) can be seen as analogous to the male peacock’s large and vibrant tail.  Even though this type of tail increases its chances of being caught by a predator, if it has survived to reproductive age and beyond, it shows the females that the male has a very high fitness despite these odds being stacked against him.  It also shows that the male is fit enough to possess a surplus of resources from its food intake that are continually donated to maintaining that tail.  Beyond this, a higher degree of symmetry in the tail (the visual patterns within each feather, the morphology of each feather, and the uniformity of the feathers as a whole set) demonstrates a lower number of mutations in its genome, thus providing better genes for any future offspring.  Because of all these factors, the female has evolved to find these male attributes attractive.

Similarly, for human beings (both male and female), an intelligent brain that is able to produce brilliant expressions of art (among other feats of intelligence), illustrates that the genome for that individual is likely to have less mutations in it.  This is especially apparent once we realize that the number of genes in our genome that pertain to our brain’s development and function accounts for an entire 50% of our total genome.  So if someone is intelligent, since their highly functional brain was dependent on having a small number of mutations in the portion of their genome pertaining to the brain, this shows that the rest of their genome is also far less likely to have harmful mutations in it (and thus less mutations passed on to future offspring).  Art aside, this kind of sexual selection is actually one prominent theory within evolutionary biology to explain why our brains grew as quickly as they did, and as large as they did.  Quite simply, if larger brains were something that both males and females found sexually attractive (through the feats of intelligence they could produce), they would be sexually selected for, thus leading to higher survival rates for offspring and a runaway effect of unprecedented brain growth.  These aesthetic preferences would then likely carry over to general displays of artistic ability, thus no longer pertaining exclusively to the search for prospective sexual mates, but also to simply enjoy the feats of intelligence themselves regardless of the source.  So there are many interesting facets that pertain to likely influential evolutionary factors relating to the origin of artistic expression (or at least the origin of our mental capacity to do so).

Neuroscience & The Arts

One final aspect I’d like to discuss that pertains to the arts within the context of the sciences, lies in the realm of neuroscience.  As neuroscientists are progressing in terms of mapping the brain’s structure and activity, they are becoming better able to determine what kinds of neurological conditions are correlated with various aspects of our conscious experience, our personality, and our behavior in general.  As for how this relates to the arts, we should also eventually be able to determine why we have have the aesthetic preferences we do, whether they are based on: various neurological predispositions, the emotional tagging of various past experiences via the amygdala (and how the memory of those emotionally tagged experiences change over time), possible differences in individual sensitivities to particular stimuli, etc.

Once we get to this level of understanding of the brain itself, when we combine it with the conjoined efforts of other scientific disciplines such as anthropology, archaeology, evolutionary biology and psychology, etc., and if we collaborate with experts in the arts and humanities themselves, we should definitely be able to answer a plethora of questions relating to the origin of art, how and why it has evolved over time as it has (and how it will likely continue to evolve given that our brains as well as our culture are continually evolving in parallel), how and why the arts affect us as they do, etc.  With this kind of knowledge developing in these fields, we may even one day see artists producing art by utilizing this knowledge in very specific and articulate ways, in order to produce expressions that are the most aesthetically pleasing, the most intellectually stimulating, and the most emotionally powerful that we’ve ever experienced, by design.  I think that by putting all of this knowledge together, we would effectively have a true science of the arts.

The arts have no doubt been a fundamental facet of the human condition, and I’m excited to see us beginning to learn the answers to these truly remarkable questions.  I’m hoping that the arts and the sciences can better collaborate with one another, rather than remain relatively alienated from one another, so that we can maximize the knowledge we gain in order to answer these big questions more effectively.  We may begin to see some truly remarkable changes in how the arts are performed and produced based on this knowledge, and this should only enhance the pleasure and enjoyment that they already bring to us.

Neurological Configuration & the Prospects of an Innate Ontology

with 2 comments

After a brief discussion on another blog pertaining to whether or not humans possess some kind of an innate ontology or other forms of what I would call innate knowledge, I decided to expand on my reply to that blog post.

While I agree that at least most of our knowledge is acquired through learning, specifically through the acquisition and use of memorized patterns of perception (as this is generally how I would define knowledge), I also believe that there are at least some innate forms of knowledge, including some that would likely result from certain aspects of our brain’s innate neurological configuration and implementation strategy.  This proposed form of innate knowledge would seem to bestow a foundation for later acquiring the bulk of our knowledge that is accomplished through learning.  This foundation would perhaps be best described as a fundamental scaffold of our ontology and thus an innate aspect that our continually developing ontology is based on.

My basic contention is that the hierarchical configuration of neuronal connections in our brains is highly analogous to the hierarchical relationships utilized to produce our conceptualization of reality.  In order for us to make sense of the world, our brains seem to fracture reality into many discrete elements, properties, concepts, propositions, etc., which are all connected to each other through various causal relationships or what some might call semantic hierarchies.  So it seems plausible if not likely that the brain is accomplishing a fundamental aspect of our ontology by our utilizing an innate hardware schema that involves neurological branching.

As the evidence in the neurosciences suggests, it certainly appears that our acquisition of knowledge through learning what those discrete elements, properties, concepts, propositions, etc., are, involves synaptogenesis followed by pruning, modifying, and reshaping a hierarchical neurological configuration, in order to end up with a more specific hierarchical neurological arrangement, and one that more accurately correlates with the reality we are interacting with and learning about through our sensory organs.  Since the specific arrangement that eventually forms couldn’t have been entirely coded for in our DNA (due to it’s extremely high level of complexity and information density), it ultimately had to be fine-tuned to this level of complexity after it’s initial pre-sensory configuration developed.  Nevertheless, the DNA sequences that were naturally selected for to produce the highly capable brains of human beings (as opposed to the DNA that guides the formation of the brain of a much less intelligent animal), clearly have encoded increasingly more effective hardware implementation strategies than our evolutionary ancestors.  These naturally selected neurological strategies seem to control what particular types of causal patterns the brain is theoretically capable of recognizing (including some upper limit of complexity), and they also seem to control how the brain stores and organizes these patterns for later use.  So overall, my contention is that these naturally selected strategies in themselves are a type of knowledge, because they seem to provide the very foundation for our initial ontology.

Based on my understanding, after many of the initial activity-independent mechanisms for neural development have occurred in some region of the developing brain such as cellular differentiation, cellular migration, axon guidance, and some amount of synapse formation, then the activity-dependent mechanisms for neuronal development (such as neural activity caused by the sensory organs in the process of learning), finally begin to modify those synapses and axons into a new hierarchical arrangement.  It is especially worth noting that even though much of the synapse formation during neural development is mediated by activity-dependent mechanisms, such as the aforementioned neural activity produced by the sensory organs during perceptual development and learning, there is also spontaneous neural activity forming many of these synapses even before any sensory input is present, thus contributing to the innate neurological configuration (i.e. that which is formed before any sensation or learning has occurred).

Thus, the subsequent hierarchy formed through neural/sensory stimulation via learning appears to begin from a parent hierarchical starting point based on neural developmental processes that are coded for in our DNA as well as synaptogenic mechanisms involving spontaneous pre-sensory neural activity.  So our brain’s innate (i.e. pre-sensory) configuration likely contributes to our making sense of the world by providing a starting point that reflects the fundamental hierarchical nature of reality that all subsequent knowledge is built off of.  In other words, it seems that if our mature conceptualization of reality involves a very specific type of hierarchy, then an innate/pre-sensory hierarchical schema of neurons would be a plausible if not expected physical foundation for it (see Edelman’s Theory of Neuronal Group Selection within this link for more empirical support of these points).

Additionally, if the brain’s wiring has evolved in order to see dimensions of difference in the world (unique sensory/perceptual patterns that is, such as quantity, colors, sounds, tastes, smells, etc.), then it would make sense that the brain can give any particular pattern an identity by having a unique schema of hardware or unique use of said hardware to perceive such a pattern and distinguish it from other patterns.  After the brain does this, the patterns are then arguably organized by the logical absolutes.  For example, if the hardware scheme or process used to detect a particular pattern “A” exists and all other patterns we perceive have or are given their own unique hardware-based identity (i.e. “not-A” a.k.a. B, C, D, etc.), then the brain would effectively be wired such that pattern “A” = pattern “A” (law of identity), any other pattern which we can call “not-A” does not equal pattern “A” (law of non-contradiction), and any pattern must either be “A” or some other pattern even if brand new, which we can also call “not-A” (law of the excluded middle).  So by the brain giving a pattern a physical identity (i.e. a specific type of hardware configuration in our brain that when activated, represents a detection of one specific pattern), our brains effectively produce the logical absolutes by nature of the brain’s innate wiring strategy which it uses to distinguish one pattern from another.  So although it may be true that there can’t be any patterns stored in the brain until after learning begins (through sensory experience), the fact that the DNA-mediated brain wiring strategy inherently involves eventually giving a particular learned pattern a unique neurological hardware identity to distinguish it from other stored patterns, suggests that the logical absolutes themselves are an innate and implicit property of how the brain stores recognized patterns.

In short, if it is true that any and all forms of reasoning as well as the ability to accumulate knowledge simply requires logic and the recognition of causal patterns, and if the brain’s innate neurological configuration schema provides the starting foundation for both, then it would seem reasonable to conclude that the brain has at least some types of innate knowledge.

Learning About Our Cognitive Biases: An Antidote to Irrational & Dogmatic Thinking (Part 3 of 3)

leave a comment »

This is part 3 of 3 of this post.  Click here to read part 2.

Reactive Devaluation

Studies have shown that if a claim is believed to have come from a friend or ally, the person receiving it will be more likely to think that it has merit and is truthful.  Likewise, if it is believed to have come from an enemy or some member of the opposition, it is significantly devalued.  This bias is known as reactive devaluation.  A few psychologists actually determined that the likeabillity of the source of the message is one of the key factors involved with this effect, and people will actually value information coming from a likeable source more than a source they don’t like, with the same order of magnitude that they would value information coming from an expert versus a non-expert.  This is quite troubling.  We’ve often heard about how political campaigns and certain debates are seen more as popularity contests than anything else, and this bias is likely a primary reason for why this is often the case.

Unfortunately, a large part of society has painted a nasty picture of atheism, skepticism, and the like.  As it turns out, people who do not believe in a god (mainly the Christian god) are the least trusted minority in America, according to a sociological study performed a few years ago (Johanna Olexy and Lee Herring, “Atheists Are Distrusted: Atheists Identified as America’s Most Distrusted Minority, According to Sociological Study,” American Sociological Association News, May 3, 2006).  Regarding the fight against dogmatism, the rational thinker needs to carefully consider how they can improve their likeability to the recipients of their message, if nothing else, by going above and beyond to remain kind, respectful, and maintain a positive and uplifting attitude during their argument presentation.  In any case, the person arguing will always be up against any societal expectations and preferences that may reduce that person’s likeability, so there’s also a need to remind others as well as ourselves about what is most important when discussing an issue — the message rather than the messenger.

The Backfire Effect & Psychological Reactance

There have already been several cognitive biases mentioned that interfere with people’s abilities to accept new evidence that contradicts their beliefs.  To make matters worse, psychologists have discovered that people often react to disconfirming evidence by actually strengthening their beliefs.  This is referred to as the backfire effect.  This can make refutations futile most of the time, but there are some strategies that help to combat this bias.  The bias is largely exacerbated by a person’s emotional involvement and the fact that people don’t want to appear to be unintelligent or incorrect in front of others.  If the debating parties let tempers cool down before resuming the debate, this can be quite helpful regarding the emotional element.  Additionally, if a person can show their opponent how accepting the disconfirming evidence will benefit them, they’ll be more likely to accept it.  There are times when some of the disconfirming evidence mentioned is at least partially absorbed by the person, and they just need some more time in a less tense environment to think things over a bit.  If the situation gets too heated, or if a person risks losing face with peers around them, the ability to persuade that person only decreases.

Another similar cognitive bias is referred to as reactance, which is basically a motivational reaction to instances of perceived infringement of behavioral freedoms.  That is, if a person feels that someone is taking away their choices or limiting the number of them, such as in cases where they are being heavily pressured into accepting a different point of view, they will often respond defensively.  They may feel that freedoms are being taken away from them, and it is only natural for a person to defend whatever freedoms they see themselves having or potentially losing.  Whenever one uses reverse psychology, they are in fact playing on at least an implicit knowledge of this reactance effect.  Does this mean that rational thinkers should use reverse psychology to persuade dogmatists to accept reason and evidence?  I personally don’t think that this is the right approach because this could also backfire and I would prefer to be honest and straightforward, even if this results in less efficacy.  At the very least however, one needs to be aware of this bias and needs to be careful with how they phrase their arguments, how they present the evidence, and to maintain a calm and respectful attitude during these discussions, so that the other person doesn’t feel the need to defend themselves with the cost of ignoring evidence.

Pareidolia & Other Perceptual Illusions

Have you ever seen faces of animals or people while looking at clouds, shadows, or other similar situations?  The brain has many pattern recognition modules and will often respond erroneously to vague or even random stimuli, such that we perceive something familiar, even when it isn’t actually there.  This is called pareidolia, and is a type of apophenia (i.e. seeing patterns in random data).  Not surprisingly, many people have reported instances of seeing various religious imagery and so forth, most notably the faces of prominent religious figures, from ordinary phenomena.  People have also erroneously heard “hidden messages” in records when playing them in reverse, and similar illusory perceptions.  This results from the fact that the brain often fills in gaps and if one expects to see a pattern (even if unconsciously driven by some emotional significance), then the brain’s pattern recognition modules can often “over-detect” or result in false positives by too much sensitivity and by conflating unconscious imagery with one’s actual sensory experiences, leading to a lot of distorted perceptions.  It goes without saying that this cognitive bias is perfect for reinforcing superstitious or supernatural beliefs, because what people tend to see or experience from this effect are those things that are most emotionally significant to them.  After it occurs, people believe that what they saw or heard must have been real and therefore significant.

Most people are aware that hallucinations occur in some people from time to time, under certain neurological conditions (generally caused by an imbalance of neurotransmitters).  A bias like pareidolia can effectively produce similar experiences, but without requiring the more specific neurological conditions that a textbook hallucination requires.  That is, the brain doesn’t need to be in any drug-induced state nor does it need to be physically abnormal in any way for this to occur, making it much more common than hallucinations.  Since pareidolia is also compounded with one’s confirmation bias, and since the brain is constantly implementing cognitive dissonance reduction mechanisms in the background (as mentioned earlier), this can also result in groups of people having the same illusory experience, specifically if the group shares the same unconscious emotional motivations for “seeing” or experiencing something in particular.  These circumstances along with the power of suggestion from even just one member of the group can lead to what are known as collective hallucinations.  Since collective hallucinations like these inevitably lead to a feeling of corroboration and confirmation between the various people experiencing it (say, seeing a “spirit” or “ghost” of someone significant), they can reinforce one another’s beliefs, despite the fact that the experience was based on a cognitive illusion largely induced by powerful human emotions.  It’s likely no coincidence that this type of group phenomenon seems to only occur with members of a religion or cult, specifically those that are in a highly emotional and synchronized psychological state.  There have been many cases of large groups of people from various religions around the world claiming to see some prominent religious figure or other supernatural being, illustrating just how universal this phenomena is within a highly emotional group context.

Hyperactive Agency Detection

There is a cognitive bias that is somewhat related to the aforementioned perceptual illusion biases which is known as hyperactive agency detection.  This bias refers to our tendency to erroneously assign agency to events that happen without an agent causing them.  Human beings all have a theory of mind that is based in part on detecting agency, where we assume that other people are causal agents in the sense that they have intentions and goals just like we do.  From an evolutionary perspective, we can see that our ability to recognize that others are intentional agents allows us to better predict another person’s behavior which is extremely beneficial to our survival (notably in cases where we suspect others are intending to harm us).

Unfortunately our brain’s ability to detect agency is hyperactive in that it errs on the side of caution by over-detecting possible agency, as opposed to under-detecting (which could negatively affect our survival prospects).  As a result, people will often ascribe agency to things and events in nature that have no underlying intentional agent.  For example, people often anthropomorphize (or implicitly assume agency to) machines and get angry when they don’t work properly (such as an automobile that breaks down while driving to work), often with the feeling that the machine is “out to get us”, is “evil”, etc.  Most of the time, if we have feelings like this, they are immediately checked and balanced by our rational minds that remind us that “it’s only a car”, or “it’s not conscious”, etc.  Similarly, when natural disasters or other similar events occur, our hyperactive agency detection snaps into gear, trying to find “someone to blame”.  This cognitive bias explains quite well, at least as a contributing factor as to why so many ancient cultures assumed that there were gods that caused earthquakes, lightning, thunder, volcanoes, hurricanes, etc.  Quite simply, they needed to ascribe the events as having been caused by someone.

Likewise, if we are walking in a forest and hear some strange sounds in the bushes, we may often assume that some intentional agent is present (whether another person or other animal), even though it may simply be the wind that is causing the noise.  Once again, we can see in this case the evolutionary benefit of this agency detection, even with the occasional “false positive”, the noise in the bushes could very well be a predator or other source of danger, so it is usually better for our brains to assume that the noise is coming from an intentional agent.  It’s also entirely possible that even in cases where the source of sound was determined to be the wind, early cultures may have ascribed an intentional stance to the wind itself (e.g. a “wind” god, etc.).  In all of these cases, we can see how our hyperactive agency detection can lead to irrational, theistic and other supernatural belief systems, and we need to be aware of such a bias when evaluating our intuitions of how the world works.

Risk Compensation

It is only natural that the more a person feels protected from various harms, the less careful they tend to behave, and vice versa.  This apparent tendency, sometimes referred to as risk compensation, is often a harmless approach because generally speaking, if one is well protected from harm, they do have less to worry about than one who is not, and thus they can take greater relative risks as a result of that larger cushion of safety.  Where this tends to cause a problem however, is in cases when the perceived level of protection is far higher than it actually is.  The worst case scenario that comes to mind is if a person that appeals to the supernatural thinks that it doesn’t matter what happens to them or that no harm can come to them because of some belief in a supernatural source of protection, let alone one that they believe provides the most protection possible.  In this scenario, their level of risk compensation is fully biased to a negative extreme, and they will be more likely to behave irresponsibly because they don’t have realistic expectations of the consequences of their actions.  In a post-enlightenment society, we’ve acquired a higher responsibility to heed the knowledge gained from scientific discoveries so that we can behave more rationally as we learn more about the consequences of our actions.

It’s not at all difficult to see how the effects of various religious dogma on one’s level of risk compensation can inhibit that society from making rational, responsible decisions.  We have several serious issues plaguing modern society including those related to environmental sustainability, climate change, pollution, war, etc.  If believers in the supernatural have an attitude that everything is “in God’s hands” or that “everything will be okay” because of their belief in a protective god, they are far less likely to take these kinds of issues seriously because they fail to acknowledge the obvious harm on everyone in society.  What’s worse is that not only are dogmatists reducing their own safety, but they’re also reducing the safety of their children, and of everyone else in society that is trying to behave rationally with realistic expectations.  If we had two planets, one for rational thinkers, and one for dogmatists, this would no longer be a problem for everyone.  The reality is that we share one planet and thus we all suffer the consequences of any one person’s irresponsible actions.  If we want to make more rational decisions, especially those related to the safety of our planet’s environment, society, and posterity, people need to adjust their risk compensation such that it is based on empirical evidence using a rational, proven scientific methodology.  This point clearly illustrates the need to phase out supernatural beliefs since false beliefs that don’t correspond with reality can be quite dangerous to everybody regardless of who carries the beliefs.  In any case, when one is faced with the choice between knowledge versus ignorance, history has demonstrated which choice is best.

Final thoughts

The fact that we are living in an information age with increasing global connectivity, and the fact that we are living in a society that is becoming increasingly reliant on technology, will likely help to combat the ill effects of these cognitive biases.  These factors are making it increasingly difficult to hide one’s self from the evidence and the proven efficacy of using the scientific method in order to form accurate beliefs regarding the world around us.  Societal expectations are also changing as a result of these factors, and it is becoming less and less socially acceptable to be irrational, dogmatic, and to not take scientific methodology more seriously.  In all of these cases, having knowledge about these cognitive biases will help people to combat them.  Even if we can’t eliminate the biases, we can safeguard ourselves by preparing for any potential ill effects that those biases may produce.  This is where reason and science come into play, providing us with the means to counter our cognitive biases by applying a rational skepticism to all of our beliefs, and by using a logical and reliable methodology based on empirical evidence to arrive at a belief that we can be justifiably confident (though never certain) in.  As Darwin once said, “Ignorance more frequently begets confidence than does knowledge; it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science.”  Science has constantly been ratcheting our way toward a better understanding of the universe we live in, despite the fact that the results we obtain from science are often at odds with our own intuitions about how we think the world is.  Only relatively recently has science started to provide us with information regarding why our intuitions are often at odds with the scientific evidence.

We’ve made huge leaps within neuroscience, cognitive science, and psychology, and these discoveries are giving us the antidote that we need in order to reduce or eliminate irrational and dogmatic thinking.  Furthermore, those that study logic have an additional advantage in that they are more likely to spot fallacious arguments that are used to support this or that belief, and thus they are less likely to be tricked or persuaded by arguments that often appear to be sound and strong, but actually aren’t.  People fall prey to fallacious arguments all the time, and it is mostly because they haven’t learned how to spot them (which courses in logic and other reasoning can help to mitigate).  Thus, overall I believe it is imperative that we integrate knowledge concerning our cognitive biases into our children’s educational curriculum, starting at a young age (in a format that is understandable and engaging of course).  My hope is that if we start to integrate cognitive education (and complementary courses in logic and reasoning) as a part of our foundational education curriculum, we will see a cascade effect of positive benefits that will guide our society more safely into the future.

Learning About Our Cognitive Biases: An Antidote to Irrational & Dogmatic Thinking (Part 2 of 3)

leave a comment »

This is part 2 of 3 of this post.  Click here to read part 1.

The Feeling of Certainty & The Overconfidence Effect

There are a lot of factors that affect how certain we feel that one belief or another is in fact true.  One factor that affects this feeling of certainty is what I like to call the time equals truth fallacy.  With this cognitive bias, we tend to feel more certain about our beliefs as time progresses, despite not gaining any new evidence to support those beliefs. Since the time with a particular belief is the only factor involved here, it will have greater effects on those that are relatively isolated or sheltered from new information.  So if a person has been indoctrinated with a particular set of beliefs (let alone irrational beliefs), and they are effectively “cut off” from any sources of information that could serve to refute those beliefs, it will become increasingly more difficult to persuade them later on.  This situation sounds all too familiar, as it is often the case that dogmatic groups will isolate themselves and shelter their members from outside influences, for this very reason.  If the group can isolate their members for long enough (or the members actively isolate themselves), the dogma effectively gets burned into them, and the brainwashing is far more successful.  That this cognitive bias has been exploited by various dogmatic/religious leaders throughout history is hardly surprising considering how effective it is.

Though I haven’t researched or come across any proposed evolutionary reasons behind the development of this cognitive bias, I do have at least one hypothesis pertaining to its origin.  I’d say that this bias may have resulted from the fact that the beliefs that matter most (from an evolutionary perspective) are those that are related to our survival goals (e.g. finding food sources or evading a predator).  So naturally, any beliefs that didn’t cause noticeable harm to an organism weren’t correlated with harm, and thus were more likely to be correct (i.e. keep using whatever works and don’t fix what ain’t broke).  However, once we started adding many more beliefs to our repertoire, specifically those that didn’t directly affect our survival (including many beliefs in the supernatural), the same cognitive rules and heuristics were still being applied as before, although these new types of beliefs (when false) haven’t been naturally selected against, because they haven’t been detrimental enough to our survival (at least not yet, or not enough to force a significant evolutionary change).  So once again, evolution may have produced this bias for very advantageous reasons, but it is a sub-optimal heuristic (as always) and one that has become a significant liability after we started evolving culturally as well.

Another related cognitive bias, and one that is quite well established, is the overconfidence effect, whereby a person’s subjective confidence level or feeling of confidence in his or her judgements or beliefs are predictably higher than the actual objective accuracy of those judgements and beliefs. In a nutshell, people tend to have far more confidence in their beliefs and decisions than is warranted.  A common example cited to illustrate the intensity of this bias pertains to people taking certain quizzes, claiming to be “99% certain” about their answers to certain questions, and then finding out afterwards that they were wrong about half of the time.  In other cases, this overconfidence effect can be even worse.

In a sense, the feeling of certainty is like an emotion, which, like our other emotions, occur as a natural reflex, regardless of the cause, and independently of reason.  Just like other emotions such as anger, pleasure, or fear, the feeling of certainty can be produced by a seizure, certain drugs, and even electrical stimulation of certain regions of the brain.  In all of these cases, even when no particular beliefs are being thought about, the brain can produce a feeling of certainty nevertheless.  Research has shown that the feeling of knowing or certainty can also be induced through various brain washing and trance-inducing techniques such as a high repetition of words, rhythmic music, sleep deprivation (or fasting), and other types of social/emotional manipulation.  It is hardly a coincidence that many religions often employ a number of these techniques within their repertoire.

The most important point to take away from learning about these “confidence/certainty” biases is to understand that the feeling of certainty is not a reliable way of determining the accuracy of one’s beliefs.  Furthermore, one must realize that no matter how certain we may feel about a particular belief, we could be wrong, and often times are.  Dogmatic belief systems such as those found in many religions are often propagated by a misleading and mistaken feeling of certainty, even if that feeling is more potent than any ever experienced before.  Often times when people ascribing to these dogmatic belief systems are questioned about the lack of empirical evidence supporting their beliefs, even if all of their arguments have been refuted, they simply reply by saying “I just know.”  Irrational, and entirely unjustified responses like these illustrate the dire need for people to become aware of just how fallible their feeling of certainty can be.

Escalation of Commitment

If a person has invested their whole lives in some belief system, even if they encounter undeniable evidence that their beliefs were wrong, they are more likely to ignore it or rationalize it away than to modify their beliefs, and thus they will likely continue investing more time and energy in those false beliefs.  This is due to an effect known as escalation of commitment.  Basically, the higher the cumulative investment in a particular course of action, the more likely someone will feel justified in continuing to increase that investment, despite new evidence showing them that they’d be better off abandoning that investment and cutting their losses.  When it comes to trying to “convert” a dogmatic believer into a more rational, free thinker, this irrational tendency severely impedes any chance of success, more so when that person has been investing themselves in the dogma for a longer period of time, since they ultimately have a lot more to lose.  To put it another way, a person’s religion is often a huge part of their personal identity, so regardless of any undeniable evidence presented that refutes their beliefs, in order to accept that evidence they will have to abandon a large part of themselves which is obviously going to make that acceptance and intellectual honesty quite difficult to implement.  Furthermore, if a person’s family or friends have all invested in the same false beliefs as themselves, even if that person discovers that those beliefs are wrong, they risk their entire family and/or friends rejecting them and then forever losing those relationships that are dearest to them.  We can also see how this escalation of commitment is further reinforced by the time equals truth fallacy mentioned earlier.

Negativity Bias

When I’ve heard various Christians proselytizing to myself or others, one tactic that I’ve seen used over and over again is the use of fear-mongering with theologically based threats of eternal punishment and torture.  If we don’t convert, we’re told, we’re doomed to burn in hell for eternity.  Their incessant use of this tactic suggests that it was likely effective on themselves contributing to their own conversion (it was in fact one of the reasons for my former conversion to Christianity).  Similar tactics have been used in some political campaigns in order to persuade voters by deliberately scaring them into taking one position over another.  Though this strategy is more effective on some than others, there is an underlying cognitive bias in all of us that contributes to its efficacy.  This is known as the negativity bias.  With this bias, information or experiences that are of a more negative nature will tend to have a greater effect on our psychological states and resulting behavior when compared to positive information or experiences that are equally intense.

People will remember threats to their well-being a lot more than they remember pleasurable experiences.  This looks like another example of a simple survival strategy implemented in our brains.  Similar to my earlier hypothesis regarding the time equals truth heuristic, it is far more important to remember and avoid dangerous or life-threatening experiences than it is to remember and seek out pleasurable experiences when all else is equal.  It only takes one bad experience to end a person’s life, whereas it is less critical to experience some minimum number of pleasurable experiences.  Therefore, it makes sense as an evolutionary strategy to allocate more cognitive resources and memory for avoiding the dangerous and negative experiences, and a negativity bias helps us to accomplish that.

Unfortunately, just as with the time equals truth bias, since our cultural evolution has involved us adopting certain beliefs that no longer pertain directly to our survival, the heuristic is often being executed improperly or in the wrong context.  This increases the chances that we will fall prey to adopting irrational, dogmatic belief systems when they are presented to us in a way that utilizes fear-mongering and various forms of threats to our well-being.  When it comes to conceiving of an overtly negative threat, can anyone imagine one more significant than the threat of eternal torture?  It is, by definition, supposed to be the worst scenario imaginable, and thus it is the most effective kind of threat to play on our negativity bias, and lead to irrational beliefs.  If the dogmatic believer is also convinced that their god can hear their thoughts, they’re also far less likely to think about their dogmatic beliefs critically, for they have no mental privacy to do so.

This bias in particular reminds me of Blaise Pascal’s famous Wager, which basically asserts that it is better to believe in God than to risk the consequences of not doing so.  If God doesn’t exist, we have “only” a finite loss (according to Pascal).  If God does exist, then one’s belief leads to an eternal reward, and one’s disbelief leads to an eternal punishment.  Therefore, it is only logical (Pascal asserts) that one should believe in God, since it is the safest position to adopt.  Unfortunately, Pascal’s premises are not sound, and therefore the conclusion is invalid.  For one, is belief in God sufficient enough to avoid the supposed eternal punishment, or does it have to be more than that, such as some other religious tenets, declarations, or rituals?  Second, which god should one believe in?  There have been thousands of gods proposed by various believers over several millennia, and there were obviously many more than we currently have records of in history, therefore Pascal’s Wager merely narrows it down to a choice of several thousand known gods.  Third, even if we didn’t have to worry about choosing the correct god, if it turned out that there was no god, would a life with that belief not have carried a significant cost?  If the belief also involved a host of dogmatic moral prescriptions, rituals, and other specific ways to live one’s life, etc., including perhaps the requirement to abstain from many pleasurable human experiences, this cost could be quite great.  Furthermore, if one applies Pascal’s wager to any number of theoretical possibilities that posit a possible infinite loss over a finite loss, one would be inclined to apply the same principle to any of those possibilities, which is obviously irrational.  It is clear that Pascal hadn’t thought this one through very well, and I wouldn’t doubt that his judgement during this apologetic formulation was highly clouded by his own negativity bias (since the fear of punishment seems to be the primary focus of his “wager”).  As was mentioned earlier, we can see how effective this bias has been on a number of religious converts, and we need to be diligent about watching out for information that is presented to us with threatening strings attached, because it can easily cloud our judgement and lead to the adoption of irrational beliefs and dogma.

Belief Bias & Argument Proximity Effects

When we analyze arguments, we often judge the strength of those arguments based on how plausible their conclusion is, rather than how well those arguments support that conclusion.  In other words, people tend to focus their attention on the conclusion of an argument, and if they think that the conclusion is likely to be true (based on their prior beliefs), this affects their perspective of how strong or weak the arguments themselves appear to be.  This is obviously an incorrect way to analyze arguments, as within logic, only the arguments themselves can be used to determine the validity of the conclusion, not the other way around.  This implies that what is intuitive to us is often incorrect, and thus our cognitive biases are constantly at odds with logic and rationality.  This is why it takes a lot of practice to learn how to apply logic effectively in one’s thinking.  It just doesn’t come naturally, even though we often think it does.

Another cognitive deficit regarding how people analyze arguments irrationally is what I like to call the argument proximity effect.  Basically, when strong arguments are presented along with weak arguments that support a particular conclusion, the strong arguments will often appear to be weaker or less persuasive because of their proximity or association with the weaker ones.  This is partly due to the fact that if a person thinks that they can defeat the moderate or weak arguments, they will often believe that they can also defeat the stronger argument, if only they were given enough time to do so.  It is as if the strong arguments become “tainted” by the weaker ones, even though the opposite is true since the arguments are independent of one another.  That is, when a person has a number of arguments to support their position, a combination of strong and weak arguments is always better than only having the strong arguments, because there are simply more arguments that need to be addressed and rebutted in the former than in the latter.  Another reason for this effect is that the presence of weak arguments also weakens the credibility of the person presenting them, and so then the stronger arguments aren’t taken as seriously by the recipient.  Just as with our belief bias, this cognitive deficit is ultimately caused by not employing logic properly, if at all.  Making people aware of this cognitive flaw is only half the battle, as once again we also need to learn about logic and how to apply it effectively in our thinking.

To read part 3 of 3, click here.

Learning About Our Cognitive Biases: An Antidote to Irrational & Dogmatic Thinking (Part 1 of 3)

leave a comment »

It is often surprising to think about the large number of people that still ascribe to dogmatic beliefs, despite our living in a post-enlightenment age of science, reason, and skeptical inquiry.  We have a plethora of scientific evidence and an enormous amount of acquired data illustrating just how fallacious various dogmatic belief systems are, as well as how dogmatism in general is utterly useless for gaining knowledge or making responsible decisions throughout one’s life.  We also have an ample means of distributing this valuable information to the public through academic institutions, educational television programming, online scientific resources, books, etc.  Yet, we still have an incredibly large number of people preferably believing in various dogmatic claims (and with a feeling of “certainty”) over those supported by empirical evidence and reason.  Furthermore, when some of these people are presented with the scientific evidence that refutes their dogmatic belief, they outright deny that the evidence exists or they simply rationalize it away.  This is a very troubling problem in our society as this kind of muddled thinking often prevents many people from making responsible, rational decisions.  Irrational thinking in general has caused many people to vote for political candidates for all the wrong reasons.  It has caused many people to raise their own children in ways that promote intolerance, prejudice, and that undervalue if not entirely abhor invaluable intellectual virtues such as rational skepticism and critical thought.
 .
Some may reasonably assume that (at least) many of these irrational belief systems and behaviors are simply a result of having low self-esteem, inadequate education and/or low intelligence, and it turns out that several dozen sociological studies have found evidence that supports this line of reasoning.  That is, a person that has lower self-esteem, lower education, and/or lower intelligence is more likely to be religious and dogmatic.  However, there is clearly much more to it than that, especially since there are still a lot of people that obtain these irrational belief systems that are also well educated and intelligent.  Furthermore, every human being is quite often irrational in their thinking.  So what else could be contributing to this irrationality (and dogmatism)?  Well, the answer seems to lie in the realms of cognitive science and psychology.  I’ve decided to split this post into three parts, because there is a lot of information I’d like to cover.  Here’s the link to part 2 of 3, which can also be found at the end of this post.

Cognitive Biases

Human beings are very intelligent relative to most other species on this planet, however, we are still riddled with various flaws in our brains which drastically reduce our ability to think logically or rationally.  This isn’t surprising after one recognizes that our brains are the product of evolution, and thus they weren’t “designed” in any way at all, let alone to operate logically or rationally.  Instead, what we see in human beings is a highly capable and adaptable brain, yet one with a number of cognitive biases and shortcomings.  Though a large number (if not all) of these biases developed as a sub-optimal yet fairly useful survival strategy, specifically within the context of our evolutionary past, most of them have become a liability in our modern civilization, and often impede our intellectual development as individuals and as a society.  A lot of these cognitive biases serve (or once served) as an effective way at making certain decisions rather quickly, that is, the biases have effectively served as heuristics for simplifying the decision making process with many everyday problems.  While heuristics are valuable and often make our decision making faculties more efficient, they are often far less than optimal due to the fact that increased efficiency is often afforded by a reduction in accuracy.  Again, this is exactly what we expect to find with products of evolution — a suboptimal strategy for solving some problem or accomplishing some goal, but one that has worked well enough to give the organism (in this case, human beings) an advantage over the competition within some environmental niche.

So what kinds of cognitive biases do we have exactly, and how many of them have cognitive scientists discovered?  A good list of them can be found here.  I’m going to mention a few of them in this post, specifically those that promote or reinforce dogmatic thinking, those that promote or reinforce an appeal to a supernatural world view, and ultimately those that seem to most hinder overall intellectual development and progress.  To begin, I’d like to briefly discuss Cognitive Dissonance Theory and how it pertains to the automated management of our beliefs.

Cognitive Dissonance Theory

The human mind doesn’t tolerate internal conflicts very well, and so when we have beliefs that contradict one another or when we are exposed to new information that conflicts with an existing belief, some degree of cognitive dissonance results and we are effectively pushed out of our comfort zone.  The mind attempts to rid itself of this cognitive dissonance through a few different methods.  A person may alter the importance of the original belief or that of the new information, they may change the original belief, or they may seek evidence that is critical of the new information.  Generally, the easiest path for the mind to take is the first and last method mentioned here, as it is far more difficult for a person to change their existing beliefs, partly due to the fact that a person’s existing set of beliefs is their only frame of reference when encountering new information, and there is an innate drive to maintain a feeling of familiarity and a feeling of certainty of our beliefs.

The primary problem with these automated cognitive dissonance reduction methods is that they tend to cause people to defend their beliefs in one way or another rather than to question them and try to analyze them objectively.  Unfortunately, this means that we often fail to consider new evidence and information using a rational approach, and this in turn can cause people to acquire quite a large number of irrational, false beliefs, despite having a feeling of certainty regarding the truth of those beliefs.  It is also important to note that many of the cognitive biases that I’m about to mention result from these cognitive dissonance reduction methods, and they can become compounded to create severe lapses in judgement.

Confirmation Bias, Semmelweis Reflex, and The Frequency Illusion

One of the most significant cognitive biases we have is what is commonly referred to as confirmation bias.  Basically, this bias refers to our tendency to seek out, interpret, or remember information in a particular way that serves to confirm our beliefs.  To put it more simply, we often will only see what we want to see.  It is a method that our brain uses in order to be able to sift through large amounts of information and piece it together with what we already believe into a meaningful story line or explanation.  Just as we expect, it ultimately optimizes for efficiency over accuracy, and therein lies the problem.  Even though this bias applies to everyone, the dogmatist in particular has a larger cognitive barrier to overcome because they’re also using a fallacious epistemological methodology right from the start (i.e. appealing to some authority rather than to reason and evidence).  So while everyone is affected by this bias to some degree, the dogmatic believer in particular has an epistemological flaw that serves to compound the issue and make matters worse.  They will, to a much higher degree, live their life unconsciously ignoring any evidence encountered that refutes their beliefs (or fallaciously reinterpreting it to be in their favor), and they will rarely if ever attempt to actively seek out such evidence to try and disprove their beliefs.  A more rational thinker on the other hand, has a belief system primarily based on a reliable epistemological methodology (which uses empirical evidence to support it), and one that has been proven to work and provide increasingly accurate knowledge better than any other method (i.e. the scientific method).  Nevertheless, everyone is affected by this bias, and because it is operating outside the conscious mind, we all fail to notice it as it actively modifies our perception of reality.

One prominent example in our modern society, illustrating how this cognitive bias can reinforce dogmatic thinking (and with large groups of people), is the ongoing debate between Young Earth Creationists and the scientific consensus regarding evolutionary theory.  Even though the theory of evolution is a scientific fact (much like many other scientific theories, such as the theory of gravity, or the Germ theory of disease), and even though there are several hundred thousand scientists that can attest to its validity, as well as a plethora of evidence within a large number of scientific fields supporting its validity, Creationists seem to be in complete and utter denial of this actuality.  Not only do they ignore the undeniable wealth of evidence that is presented to them, but they also misinterpret evidence (or cherry pick) to suit their position.  This problem is compounded by the fact that their beliefs are only supported by fallacious tautologies [e.g. “It’s true because (my interpretation of) a book called the Bible says so…”], and other irrational arguments based on nothing more than a particular religious dogma and a lot of intellectual dishonesty.

I’ve had numerous debates with these kinds of people (and I used to BE one of them many years ago, so I understand how many of them arrived at these beliefs), and I’ll often quote several scientific sources and various logical arguments to support my claims (or to refute theirs), and it is often mind boggling to witness their response, with the new information seemingly going in one ear and coming out the other without undergoing any mental processing or critical consideration.  It is as if they didn’t hear a single argument that was pointed out to them and merely executed some kind of rehearsed reflex.  The futility of the communication is often confirmed when one finds themselves having to repeat the same arguments and refutations over and over again, seemingly falling on deaf ears, with no logical rebuttal of the points made.  On a side note, this reflex-like response where a person quickly rejects new evidence because it contradicts their established belief system is known as the “Semmelweis reflex/effect”, but it appears to be just another form of confirmation bias.  Some of these cases of denial and irrationality are nothing short of ironic, since these people are living in a society that owes its technological advancements exclusively to rational, scientific methodologies, and these people are indeed patronizing and utilizing many of these benefits of science everyday of their lives (even if they don’t realize it).  Yet we still find many of them hypocritically abhorring or ignoring science and reason whenever it is convenient to do so, such as when they try to defend their dogmatic beliefs.

Another prominent example of confirmation bias reinforcing dogmatic thinking relates to various other beliefs in the supernatural.  People that believe in the efficacy of prayer, for example, will tend to remember prayers that were “answered” and forget or rationalize away any prayers that weren’t “answered”, since their beliefs reinforce such a selective memory.  Similarly, if a plane crash or other disaster occurs, some people with certain religious beliefs will often mention or draw attention to the idea that their god or some supernatural force must have intervened or played a role in preventing the death of any survivors (if there are any), while they seem to downplay or ignore the facts pertaining to the many others that did not survive (if there are any survivors at all).  In the case of prayer, numerous studies have shown that prayer for another person (e.g. to heal them from an illness) is ineffective when that person doesn’t know that they’re being prayed for, thus any efficacy of prayer has been shown to be a result of the placebo effect and nothing more.  It may be the case that prayer is one of the most effective placebos, largely due to the incredibly high level of belief in its efficacy, and the fact that there is no expected time frame for it to “take effect”.  That is, since nobody knows when a prayer will be “answered”, then even if the prayer isn’t “answered” for several months or even several years (and time ranges like this are not unheard of for many people that have claimed to have prayers answered), then confirmation bias will be even more effective than a traditional medical placebo.  After all, a typical placebo pill or treatment is expected to work within a reasonable time frame comparable to other medicine or treatments taken in the past, but there’s no deadline for a prayer to be answered by.  It’s reasonable to assume that even if these people were shown the evidence that prayer is no more effective than a placebo (even if it is the most effective placebo available), they would reject it or rationalize it away, once again, because their beliefs require it to be so.  The same bias applies to numerous other purportedly paranormal phenomena, where people see significance in some event because of how their memory or perception is operating in order to promote or sustain their beliefs.  As mentioned earlier, we often see what we want to see.

There is also a closely related bias known as congruence bias, which occurs because people rely too heavily on directly testing a given hypothesis, and often neglect to indirectly test that hypothesis.  For example, suppose that you were introduced to a new lighting device with two buttons on it, a green button and a red button.  You are told that the device will only light up by pressing the green button.  A direct test of this hypothesis would be to press the green button, and see if it lights up.  An indirect test of this hypothesis would be to press the red button, and see if it doesn’t light up.  Congruence bias illustrates that we tend to avoid the indirect testing of hypotheses, and thus we can start to form irrational beliefs by mistaking correlation with causation, or by forming incomplete explanations of causation.  In the case of the aforementioned lighting device, it could be the case that both buttons cause it to light up.  Think about how this congruence bias affects our general decision making process, where when we combine it with our confirmation bias, we are inclined to not only reaffirm our beliefs, but to avoid trying to disprove them (since we tend to avoid indirect testing of those beliefs).  This attitude and predisposition reinforces dogmatism by assuming the truth of one’s beliefs and not trying to verify them in any rational, critical way.

An interesting cognitive bias that often works in conjunction with a person’s confirmation bias is something referred to as the frequency illusion, whereby some detail of an event or some specific object may enter a person’s thoughts or attention, and then suddenly it seems that they are experiencing the object or event at a higher than normal frequency.  For example, if a person thinks about a certain animal, say a turtle, they may start noticing lots of turtles around them that they would have normally overlooked.  This person may even go to a store and suddenly notice clothing or other gifts with turtle patterns or designs on them that they didn’t seem to notice before.  After all, “turtle” is on their mind, or at least in the back of their mind, so their brain is unconsciously “looking” for turtles, and the person isn’t aware of their own unconscious pattern recognition sensitivity.  As a result, they may think that this perceived higher frequency of “seeing turtles” is abnormal and that it must be more than simply a coincidence.  If this happens to a person that appeals to the supernatural, their confirmation bias may mistake this frequency illusion for a supernatural event, or something significant.  Since this happens unconsciously, people can’t control this illusion or prevent it from happening.  However, once a person is aware of the frequency illusion as a cognitive bias that exists, they can at least reassess their experiences with a larger toolbox of rational explanations, without having to appeal to the supernatural or other irrational belief systems.  So in this particular case, we can see how various cognitive biases can “stack up” with one another and cause serious problems in our reasoning abilities and negatively affect how accurately we perceive reality.

To read part 2 of 3, click here.

Mind, Body, and the Soul: The Quest for an Immaterial Identity

leave a comment »

There’s little if any doubt that the brain (the human brain in particular) is the most complex entity or system that we’ve ever encountered in the known universe, and thus it is not surprising that it has allowed humans to reach the top of the food chain and also the ability to manipulate our environment more than any other creature on Earth.  Not only has it provided humans with the necessary means for surviving countless environmental pressures, effectively evolving as a sort of anchor and catalyst for our continued natural selection over time (through learning, language, adaptive technology, etc.), but it has also allowed humans to become aware of themselves, aware of their own consciousness, and aware of their own brains in numerous other ways.  The brain appears to be the first evolved feature of an organism capable of mapping the entire organism (including its interaction with the external environment), and it may even be the case that consciousness later evolved as a result of the brain making maps of itself.  Even beyond these capabilities, the human brain has also been able to map itself in terms of perceptually acquired patterns related to its own activity (i.e. when we study and learn about how our brains work).

It isn’t at all surprising when people marvel over the complexity, beauty and even seemingly surreal qualities of the brain as it produces the qualia of our subjective experience including all of our sensations, emotions and the resulting feelings that ensue.  Some of our human attributes are so seemingly remarkable, that many people have gone so far as to say that at least some of these attributes are either supernatural, supernaturally endowed, and/or are forever exclusive to humans.  For example, some religious people claim that humans alone have some kind of immaterial soul that exists outside of our experiential reality.  Some also believe that humans alone possess free will, are conscious in some way forever exclusive to humans (some have even argued that consciousness in general is an exclusively human trait), and a host of other (perhaps anthropocentric) “human only” attributes, with many of them forever exclusive to humans.  In the interest of philosophical exploration, I’d like to consider and evaluate some of these claims about “exclusively human” attributes.  In particular, I’d like to focus on the non-falsifiable claim of having a soul, with the aid of reason and a couple of thought experiments, although these thought experiments may also shed some light on other purported “exclusively human” attributes (e.g. free will, consciousness, etc.).  For the purposes of simplicity in these thought experiments, I may periodically refer to many or all purported “humanly exclusive” attributes as simply, “H”.  Let’s begin by briefly examining some of the common conceptions of a soul and how it is purported to relate to the physical world.

What is a Soul?

It seems that most people would define a soul to be some incorporeal entity or essence that serves as an immortal aspect or representation of an otherwise mortal/living being.  Furthermore, many people think that souls are something possessed by human beings alone.  There are also people who ascribe souls to non-living entities (such as bodies of water, celestial bodies, wind, etc.), but regardless of these distinctions, for those that believe in souls, there seems to be something in common: souls appear to be non-physical entities correlated, linked, or somehow attached to a particular physical body or system, and are usually believed to give rise to consciousness, a “life force”, animism, or some power of agency.  Additionally, they are often believed to transcend material existence through their involvement in some form of an afterlife.  While it is true that souls and any claims about souls are unfalsifiable and thus are excluded from any kind of empirical investigation, let’s examine some commonly held assumptions and claims about souls and see how they hold up to a more critical examination.

Creation or Correlation of Souls

Many religious people now claim that a person’s life begins at conception (after Science discovered this specific stage of reproduction), and thus it would be reasonable to assume that if they have a soul, that soul is effectively created at conception.  However, some also believe that all souls have co-existed for the same amount of time (perhaps since the dawn of our universe), and that souls are in some sense waiting to be linked to the physical person once they are conceived or come into existence.  Another way of expressing this latter idea is the belief that all souls have existed since some time long ago, but only after the reproductive conception of a person does that soul begin to have a physical correlate or incarnation linked to it.  In any case, the presumed soul is believed to be correlated to a particular physical body (generally presumed to be a “living” body, if not a human body), and this living body has been defined by many to begin its life either at conception (i.e. fertilization), shortly thereafter as an embryo (i.e. once the fertilized egg/cell undergoes division at least once), or once it is considered a fetus (depending on the context for such a definition).  The easiest definition to use for the purposes of this discussion is to define life to begin at conception (i.e. fertilization).

For one, regardless of the definition chosen, it seems difficult to define exactly when the particular developmental stage in question is reached.  Conception could be defined to take place once the spermatozoa’s DNA contents enter the zygote or perhaps not until some threshold has been reached in a particular step of the process afterward (e.g. some time after the individual parent DNA strands have mixed to produce a double-helix daughter strand).  Either way, most proponents of the idea of a human soul seem to assume that a soul is created or at least correlated (if created some time earlier) at the moment of, or not long after, fertilization.  At this point, the soul is believed to be correlated or representative of the now “living” being (which is of course composed of physical materials).

At a most basic level, one could argue, if we knew exactly when a soul was created/correlated with a particular physical body (e.g. a fertilized egg), then by reversing the last step in the process that instigated the creation/correlation of the soul, we should be able to destroy/decorrelate the soul.  Also, if a soul was in fact correlated with an entire fertilized egg, then if we remove even one atom, molecule, etc., would that correlation change?  If not, then it would appear that the soul is not actually correlated with the entire fertilized egg, but rather it is correlated with some higher level aspect or property of it (whatever that may be).

Conservation & Identity of Souls

Assuming a soul is in fact created or correlated with a fertilized egg, what would happen in the case of chimerism, where more than one fertilized egg fuse together in the early stages of embryonic development?  Would this developing individual have two souls?  By the definition or assumptions given earlier, if a soul is correlated with a fertilized egg in some way, and two fertilized eggs (each with their own soul) merge together, then this would indicate one of a few possibilities.  Either two souls merged into one (or one is actually destroyed) which would demonstrate that the number of souls are not conserved (indicating that not all souls are eternal/immortal), or the two souls would co-exist with that one individual and would imply that not all individuals have the same number of souls (some have one, some may have more) and thus souls don’t each have their own unique identity with a particular person, or it would indicate that after the merging of fertilized eggs took place, one of the two souls would detach from or become decorrelated with its physical counterpart, and the remaining soul would get to keep the booty of both fertilized eggs or so to speak.

In the case of identical twins, triplets, etc., a fertilized egg eventually splits, and we are left with the opposite conundrum. It would seem that we would be starting with one soul that eventually splits into two or more, and thus there would be another violation of the conservation of the number of souls.  Alternatively, if the number of souls are indeed conserved, an additional previously existing soul (if this was the case) could become correlated with the second fertilized egg produced. Yet another possibility would be to say that the “twins to be” (i.e. the fertilized egg prior to splitting) has two souls to start with and when the egg splits, the souls are segregated and each pre-destined twin is given their own.

The only way to avoid these implications would be to modify the assumption given earlier, regarding when a soul is created or correlated.  It would have to be defined such that a soul is created or correlated with a physical body some time after an egg is fertilized when it is no longer possible to fuse with another fertilized egg and after it can no longer split into fertilized multiples (i.e. twins, triplets, etc.).  If this is true, then one could no longer say that a fertilized egg necessarily has a soul, for that wouldn’t technically be the case until some time afterward when chimerism or monozygotic multiples were no longer possible.

If people believe in non-physical entities that can’t be seen or in any way extrospectively verified, it’s not much of a stretch to say that they can come up with a way to address these questions or reconcile these issues, with yet more unfalsifiable claims.  Some of these might not even be issues for various believers but I only mention these potential issues to point out the apparent arbitrariness or poorly defined aspects of many claims and assumptions regarding souls. Now let’s look at a few thought experiments to further analyze the concept of a soul and purported “exclusively human” attributes (i.e. “H”) as mentioned in the introduction of this post.

Conservation and Identity of “H”

Thought Experiment # 1: Replace a Neuron With a Non-Biological Analog

What if one neuron in a person’s brain is replaced with a non-biological/artificial version, that is, what if some kind of silicon-based (or other non-carbon-based) analog to a neuron was effectively used to replace a neuron?  We are assuming that this replacement with another version will accomplish the same vital function, that is, the same subjective experience and behavior.  This non-biologically-based neuronal analog may be powered by ATP (Adenosine Triphosphate) and also respond to neurotransmitters with electro-chemical sensors — although it wouldn’t necessarily have to be constrained by the same power or signal transmission media (or mechanisms) as long as it produced the same end result (i.e. the same subjective experience and behavior).  As long as the synthetic neuronal replacement accomplished the same ends, the attributes of the person (i.e. their identity, their beliefs, their actions, etc.) should be unaffected despite any of these changes to their hardware.

Regarding the soul, if souls do in fact exist and they are not physically connected to the body (although people claim that souls are somehow associated with a particular physical body), then it seems reasonable to assume that changing a part of the physical body should have no effect on an individual’s possession of that soul (or any “H” for that matter), especially if the important attributes of the individual, i.e., their beliefs, thoughts, memories, and subsequent actions, etc., were for all practical purposes (if not completely), the same as before.  Even if there were some changes in the important aspects of the individual, say, if there was a slight personality change after some level of brain surgery, could anyone reasonably argue that their presumed soul (or their “H”) was lost as a result?  If physical modifications of the body led to the loss of a soul (or of any elements of “H”), then there would be quite a large number of people (and an increasing number at that) who no longer have souls (or “H”) since many people indeed have had various prosthetic modifications used in or on their bodies (including brain and neural prosthetics) as well as other intervening mediation of body/brain processes (e.g. through medication, transplants, various levels of critical life support, etc.).

For those that think that changing the body’s hardware would somehow disconnect the presumed soul from that person’s body (or eliminate other elements of their “H”), they should consider that this assumption is strongly challenged by the fact that many of the atoms in the human body are replaced (some of them several times over) throughout one’s lifetime anyway.  Despite this drastic biological “hardware” change, where our material selves are constantly being replaced with new atoms from the food that we eat and the air that we breathe (among other sources), we still manage to maintain our memories and our identity simply because the functional arrangements of the brain cells (i.e. neurons and glial cells) which are composed of those atoms are roughly preserved over time and thus the information contained in such arrangements and/or their resulting processes are preserved over time.  We can analogize this important point by thinking about a computer that has had its hardware replaced, albeit in a way that matches or maintains its original physical state, and understand that as a result of this configuration preservation, it also should be able to maintain its original memory, programs and normal functional operation.  One could certainly argue that the computer in question is technically no longer the “same” computer because it no longer has any of the original hardware.  However, the information regarding the computer’s physical state, that is, the specific configuration and states of parts that allow it to function exactly as it did before the hardware replacement, is preserved.  Thus, for all practical purposes in terms of the identity of that computer, it remained the same regardless of the complete hardware change.

This is an important point to consider for those who think that replacing the hardware of the brain (even if limited to a biologically sustained replacement) is either theoretically impossible, or that it would destroy one’s ability to be conscious, to maintain their identity, to maintain their presumed soul, or any presumed element of “H”.  The body naturally performs these hardware changes (through metabolism, respiration, excretion, etc.) all the time and thus the concept of changing hardware while maintaining the critical aspects of an individual is thoroughly demonstrated throughout one’s lifetime.  On top of this, the physical outer boundary that defines our bodies is also arbitrary in the sense that we exchange atoms between our outer surface and the environment around us (e.g. by shedding skin cells, or through friction, molecular desorption/adsorption/absorption, etc.).  The key idea to keep in mind is that these natural hardware changes imply that “we” are not defined specifically by our hardware or some physical boundary with a set number of atoms, but rather “we” are based on how our hardware is arranged/configured (allowing for some variation of configuration states within some finite acceptable range), and the subsequent processes and functions that result from such an arrangement as mediated by the laws of physics.

Is the type of hardware important?  It may be true that changing a human’s hardware to a non-biological version may never be able to accomplish exactly the same subjective experience and behavior that was possible with the biological hardware, however we simply don’t know that this is the case.  It may be that both the type of hardware as well as the configuration are necessary for a body and brain to produce the same subjective experience and behavior.  However, the old adage “there’s more than one way to skin a cat” has been applicable to so many types of technologies and to the means used to accomplish a number of goals.  There are a number of different hardware types and configurations that can be used to accomplish a particular task, even if, after changing the hardware the configuration must also be changed to accomplish a comparable result.  The question becomes, which parts or aspects of the neural process in the brain produces subjective experience and behavior?  If this becomes known, we should be able to learn how biologically-based hardware and its configuration work together in order to accomplish a subjective experience and behavior, and then also learn if non-biologically-based hardware (perhaps with its own particular configuration) can accomplish the same task.  For the purposes of this thought experiment, let’s assume that we can swap out the hardware with a different type, even if, in order to preserve the same subjective experience and behavior, the configuration must be significantly different than it was with the original biologically-based hardware.

So, if we assume that we can replace a neuron with an efficacious artificial version, and still maintain our identity, our consciousness, any soul that might be present, or any element of “H” for that matter, then even if we replace two neurons with artificial versions, we should still have the same individual.  In fact, even if we replace every neuron, perhaps just one neuron at a time, eventually we would be replacing the entire brain with an artificial version, and yet still have the same individual.  This person would now have a completely non-biologically based “brain”.  In theory, their identity would be the same, and they would subjectively experience reality and their selves as usual.  Having gone this far, let’s assume that we replace the rest of the body with an artificial version.  Replacing the rest of the body, one part at a time, should be far less significant a change than replacing the brain, for the rest of the body is far less complex.

It may be true that the body serves as an integral homeostatic frame of reference necessary for establishing some kind of self-object basis of consciousness (e.g. Damasio’s Theory of Consciousness), but as long as our synthetic brain is sending/receiving the appropriate equivalent of sensory/motor information (i.e. through an interoceptive feedback loop among other requirements) from the new artificial body, the model or map of the artificial body’s internal state provided by the synthetic brain should be equivalent.  It should also be noted that the range of conditions necessary for homeostasis in one human body versus another is far narrower and less individualized than the differences found between the brains of two different people.  This supports the idea that the brain is in fact the most important aspect of our individuality, and thus replacing the rest of the body should be significantly easier to accomplish and also less critical a change.  After replacing the rest of the body, we would now have a completely artificial non-biological substrate for our modified “human being”, or what many people would refer to as a “robot”, or a system of “artificial intelligence” with motor capabilities.  This thought experiment seems to suggest at least one of several implications:

  • Some types of robots can possess “H” (e.g. soul, consciousness, free-will, etc.), and thus “H” are not uniquely human, nor are they forever exclusive to humans.
  • Humans lose some or all of their “H” after some threshold of modification has taken place (likely a modification of the brain)
  • “H”, as it is commonly defined at least, does not exist

The first implication listed above would likely be roundly rejected by most people that believe in the existence of “H” for several reasons including the fact that most people see robots as fundamentally different than living systems, they see “H” as only applicable to human beings, and they see a clear distinction between robots and human beings (although the claim that these distinctions exist has been theoretically challenged by this thought experiment).  The second implication sounds quite implausible (even if we assume that “H” exists) as it would seem to be impossible to define when exactly any elements of “H” were lost based on exceeding some seemingly arbitrary threshold of modification.  For example, would the loss of some element of “H” occur only after the last neuron was replaced with an artificial version?  If the loss of “H” did occur after some specific number of neurons were removed (or after the number of neurons that remained fell below some critical minimum quantity), then what if the last neuron removed (which caused this critical threshold to be met) was biologically preserved and later re-installed, thus effectively reversing the last neuronal replacement procedure?  Would the previously lost “H” then return?

Thought Experiment # 2: Replace a Non-Biological Neuronal Analog With a Real Neuron

We could look at this thought experiment (in terms of the second implication) yet another way by simply reversing the order of the thought experiment.  For example, imagine that we made a robot from scratch that was identical to the robot eventually obtained from the aforementioned thought experiment, and then we began to replace its original non-biologically-based neuronal equivalent with actual biologically-based neurons, perhaps even neurons that were each taken from a separate human brain (say, from one or several cadavers) and preserved for such a task.  Even after this, consider that we proceed to replace the rest of the robot’s “body”, again piecewise (say, from one or several cadavers), until it was completely biologically-based to match the human being we began with in the initial thought experiment.  Would or could this robot acquire “H” at some point, or be considered human?  It seems that there would be no biological reason to claim otherwise.

Does “H” exist?  If So, What is “H”?

I’m well aware of how silly some of these hypothetical questions and considerations sound, however I find it valuable to follow the reasoning all the way through in order to help illustrate the degree of plausibility of these particular implications, and the plausibility or validity of “H”.  In the case of the second implication given previously (that humans lose some or all of “H” after some threshold of modification), if there’s no way to define or know when “H” is lost (or gained), then nobody can ever claim with certainty that an individual has lost their “H”, and thus they would have to assume that all elements of “H” have never been lost (if they want to err on the side of, what some may call, ethical or moral caution).  By that rationale, one would find themselves forced to accept the first implication (some types of robots can possess “H”, and thus “H” isn’t unique to humans).  If anyone denies the first two implications, it seems that they are only left with the third option.  The third implication seems to be the most likely (that “H” as previously defined does not exist), however it should be mentioned that even this third implication may be circumvented by realizing that it has an implicit loophole.  There is a possibility that some or all elements and/or aspects of “H” are not exactly what people assume them to be, and therefore “H” may exist in some other sense.  For example, what if we considered particular patterns themselves, i.e., the brain/neuronal configurations, patterns of brain waves, neuronal firing patterns, patterns of electro-chemical signals emanated throughout the body, etc., to be the “immaterial soul” of each individual?  We could look at these patterns as being immaterial if the physical substrate that employs them is irrelevant, or by simply noting that patterns of physical material states are not physical materials in themselves.

This is analogous to the concept that the information contained in a book can be represented on paper, electronically, in multiple languages, etc., and is not reliant on a specific physical medium.  This would mean that one could accept the first implication that robots or “mechanized humans” possess “H”, although it would also necessarily imply that any elements of “H” aren’t actually unique or exclusive to humans as they were initially assumed to be.  One could certainly accept this first implication by noting that the patterns of information (or patterns of something if we don’t want to call it information per se) that comprise the individual were conserved throughout the neuronal (or body) replacement in these thought experiments, and thus the essence or identity of the individual (whether “human” or “robot”) was preserved as well.

Pragmatic Considerations & Final Thoughts

I completely acknowledge that in order for this hypothetical neuronal replacement to be truly accurate in reproducing normal neuronal function (even with just one neuron), above and beyond the potential necessity of both a specific type of hardware as well as configuration (as mentioned earlier), the non-biologically based version would presumably also have to replicate the neuronal plasticity that the brain normally possesses.  In terms of brain plasticity, there are basically four known factors involved with neuronal change, sometimes referred to as the four R’s: regeneration, reconnection, re-weighting, and rewiring.  So clearly, any synthetic neuronal version would likely involve some kind of malleable processing in order to accomplish at least some of these tasks (if not all of them to some degree), as well as some possible nano-self-assembly processes if actual physical rewiring were needed.  The details of what and how this would be accomplished will become better known over time as we learn more about the possible neuronal dynamic mechanisms involved (e.g. neural darwinism or other means of neuronal differential reproduction, connectionism, Hebbian learning, DNA instruction, etc.).

I think that the most important thing to gain from these thought experiments is the realization of the inability or severe difficulty in taking the idea of souls or “H” seriously given the incompatibility between the traditional  conception of a concrete soul or other “H” and the well-established fluidic or continuous nature of the material substrates that they are purportedly correlated with.  That is, all the “things” in this world, including any forms of life (human or not) are constantly undergoing physical transformation and change, and they possess seemingly arbitrary boundaries that are ultimately defined by our own categorical intuitions and subjective perception of reality.  In terms of any person’s quest for “H”, if what one is really looking for is some form of constancy, essence, or identity of some kind in any of the things around us (let alone in human beings), it seems that it is the patterns of information (or perhaps the patterns of energy to be more accurate) as well as the level of complexity or type of patterns that ultimately constitute that essence and identity.  Now if it is reasonable to conclude that the patterns of information or energy that comprise any physical system aren’t equivalent to the physical constituent materials themselves, one could perhaps say that these patterns are a sort of “immaterial” attribute of a set of physical materials.  This seems to be as close to the concept of an immaterial “soul” as a physicalist or materialist could concede exists, since, at the very least it involves a property of continuity and identity which somewhat transcends the physical materials themselves.