The Experientiality of Matter

If there’s one thing that Nietzsche advocated for, it was to eliminate dogmatism and absolutism from one’s thinking.  And although I generally agree with him here, I do think that there is one exception to this rule.  One thing that we can be absolutely certain of is our own conscious experience.  Nietzsche actually had something to say about this (in Beyond Good and Evil, which I explored in a previous post), where he responds to Descartes’ famous adage “cogito ergo sum” (the very adage associated with my blog!), and he basically says that Descartes’ conclusion (“I think therefore I am”) shows a lack of reflection concerning the meaning of “I think”.  He wonders how he (and by extension, Descartes) could possibly know for sure that he was doing the thinking rather than the thought doing the thinking, and he even considers the possibility that what is generally described as thinking may actually be something more like willing or feeling or something else entirely.

Despite Nietzsche’s criticism against Descartes in terms of what thought is exactly or who or what actually does the thinking, we still can’t deny that there is thought.  Perhaps if we replace “I think therefore I am” with something more like “I am conscious, therefore (my) conscious experience exists”, then we can retain some core of Descartes’ insight while throwing out the ambiguities or uncertainties associated with how exactly one interprets that conscious experience.

So I’m in agreement with Nietzsche in the sense that we can’t be certain of any particular interpretation of our conscious experience, including whether or not there is an ego or a self (which Nietzsche actually describes as a childish superstition similar to the idea of a soul), nor can we make any certain inferences about the world’s causal relations stemming from that conscious experience.  Regardless of these limitations, we can still be sure that conscious experience exists, even if it can’t be ascribed to an “I” or a “self” or any particular identity (let alone a persistent identity).

Once we’re cognizant of this certainty, and if we’re able to crawl out of the well of solipsism and eventually build up a theory about reality (for pragmatic reasons at the very least), then we must remain aware of the priority of consciousness in any resultant theory we construct about reality, with regard to its structure or any of its other properties.  Personally, I believe that some form of naturalistic physicalism (a realistic physicalism) is the best candidate for an ontological theory that is the most parsimonious and explanatory for all that we experience in our reality.  However, most people that make the move to adopt some brand of physicalism seem to throw the baby out with the bathwater (so to speak), whereby consciousness gets eliminated by assuming it’s an illusion or that it’s not physical (therefore having no room for it in a physicalist theory, aside from its neurophysiological attributes).

Although I used to feel differently about consciousness (and it’s relationship to physicalism), where I thought it was plausible for it to be some kind of an illusion, upon further reflection I’ve come to realize that this was a rather ridiculous position to hold.  Consciousness can’t be an illusion in the proper sense of the word, because the experience of consciousness is real.  Even if I’m hallucinating where my perceptions don’t directly correspond with the actual incoming sensory information transduced through my body’s sensory receptors, then we can only say that the perceptions are illusory insofar as they don’t directly map onto that incoming sensory information.  But I still can’t say that having these experiences is itself an illusion.  And this is because consciousness is self-evident and experiential in that it constitutes whatever is experienced no matter what that experience consists of.

As for my thoughts on physicalism, I came to realize that positing consciousness as an intrinsic property of at least some kinds of physical material (analogous to a property like mass) allows us to avoid having to call consciousness non-physical.  If it is simply an experiential property of matter, that doesn’t negate its being a physical property of that matter.  It may be that we can’t access this property in such a way as to evaluate it with external instrumentation, like we can for all the other properties of matter that we know of such as mass, charge, spin, or what-have-you, but that doesn’t mean an experiential property should be off limits for any physicalist theory.  It’s just that most physicalists assume that everything can or has to be reducible to the externally accessible properties that our instrumentation can measure.  And this suggests that they’ve simply assumed that the physical can only include externally accessible properties of matter, rather than both internally and externally accessible properties of matter.

Now it’s easy to see why science might push philosophy in this direction because its methodology is largely grounded on third-party verification and a form of objectivity involving the ability to accurately quantify everything about a phenomenon with little or no regard for introspection or subjectivity.  And I think that this has caused many a philosopher to paint themselves into a corner by assuming that any ontological theory underlying the totality of our reality must be constrained in the same way that the physical sciences are.  To see why this is an unwarranted assumption, let’s consider a “black box” that can only be evaluated by a certain method externally.  It would be fallacious to conclude that just because we are unable to access the inside of the box, that the box must therefore be empty inside or that there can’t be anything substantially different inside the box compared to what is outside the box.

We can analogize this limitation of studying consciousness with our ability to study black holes within the field of astrophysics, where we’ve come to realize that accessing any information about their interior (aside from how much mass there is) is impossible to do from the outside.  And if we managed to access this information (if there is any) from the inside by leaping past its outer event horizon, it would be impossible for us to escape and share any of that information.  The best we can do is to learn what we can from the outside behavior of the black hole in terms of its interaction with surrounding matter and light and infer something about the inside, like how much matter it contains (e.g. we can infer the mass of a black hole from its outer surface area).  And we can learn a little bit more by considering what is needed to create or destroy a black hole, thus creating or destroying any interior qualities that may or may not exist.

A black hole can only form from certain configurations of matter, particularly aggregates that are above a certain mass and density.  And it can only be destroyed by starving it to death, by depriving it of any new matter, where it will slowly die by evaporating entirely into Hawking radiation, thus destroying anything that was on the inside in the process.  So we can infer that any internal qualities it does have, however inaccessible they may be, can be brought into and out of existence with certain physical processes.

Similarly, we can infer some things about consciousness by observing one’s external behavior including inferring some conditions that can create, modify, or destroy that type of consciousness, but we are unable to know what it’s like to be on the inside of that system once it exists.  We’re only able to know about the inside of our own conscious system, where we are in some sense inside our own black hole with nobody else able to access this perspective.  And I think it is easy enough to imagine that certain configurations of matter simply have an intrinsic, externally inaccessible experiential property, just as certain configurations of matter lead to the creation of a black hole with its own externally inaccessible and qualitatively unknown internal properties.  Despite the fact that we can’t access the black hole’s interior with a strictly external method, to determine its internal properties, this doesn’t mean we should assume that whatever properties may exist inside it are therefore fundamentally non-physical.  Just as we wouldn’t consider alternate dimensions (such as those predicted in M-theory/String-Theory) that we can’t physically access to be non-physical.  Perhaps one or more of these inaccessible dimensions (if they exist) is what accounts for an intrinsic experiential property within matter (though this is entirely speculative and need not be true for the previous points to hold, but it’s an interesting thought nevertheless).

Here’s a relevant quote from the philosopher Galen Strawson, where he outlines what physicalism actually entails:

Real physicalists must accept that at least some ultimates are intrinsically experience-involving. They must at least embrace micropsychism. Given that everything concrete is physical, and that everything physical is constituted out of physical ultimates, and that experience is part of concrete reality, it seems the only reasonable position, more than just an ‘inference to the best explanation’… Micropsychism is not yet panpsychism, for as things stand realistic physicalists can conjecture that only some types of ultimates are intrinsically experiential. But they must allow that panpsychism may be true, and the big step has already been taken with micropsychism, the admission that at least some ultimates must be experiential. ‘And were the inmost essence of things laid open to us’ I think that the idea that some but not all physical ultimates are experiential would look like the idea that some but not all physical ultimates are spatio-temporal (on the assumption that spacetime is indeed a fundamental feature of reality). I would bet a lot against there being such radical heterogeneity at the very bottom of things. In fact (to disagree with my earlier self) it is hard to see why this view would not count as a form of dualism… So now I can say that physicalism, i.e. real physicalism, entails panexperientialism or panpsychism. All physical stuff is energy, in one form or another, and all energy, I trow, is an experience-involving phenomenon. This sounded crazy to me for a long time, but I am quite used to it, now that I know that there is no alternative short of ‘substance dualism’… Real physicalism, realistic physicalism, entails panpsychism, and whatever problems are raised by this fact are problems a real physicalist must face.

— Galen Strawson, Consciousness and Its Place in Nature: Does Physicalism Entail Panpsychism?
.
While I don’t believe that all matter has a mind per se, because a mind is generally conceived as being a complex information processing structure, I think it is likely that all matter has an experiential quality of some kind, even if most instantiations of it are entirely unrecognizable as what we’d generally consider to be “consciousness” or “mentality”.  I believe that the intuitive gap here is born from the fact that the only minds we are confident exist are those instantiated by a brain, which has the ability to make an incredibly large number of experiential discriminations between various causal relations, thus giving it a capacity that is incredibly complex and not observed anywhere else in nature.  On the other hand, a particle of matter on its own would be hypothesized to have the capacity to make only one or two of these kinds of discriminations, making it unintelligent and thus incapable of brain-like activity.  Once a person accepts that an experiential quality can come in varying degrees from say one experiential “bit” to billions or trillions of “bits” (or more), then we can plausibly see how matter could give rise to systems that have a vast range in their causal power, from rocks that don’t appear to do much at all, to living organisms that have the ability to store countless representations of causal relations (memory) allowing them to behave in increasingly complex ways.  And perhaps best of all, this approach solves the mind-body problem by eliminating the mystery of how fundamentally non-experiential stuff could possibly give rise to experientiality and consciousness.
Advertisements

It’s Time For Some Philosophical Investigations

Ludwig Wittgenstein’s Philosophical Investigations is a nice piece of work where he attempts to explain his views on language and the consequences of this view on various subjects like logic, semantics, cognition, and psychology.  I’ve mentioned some of his views very briefly in a couple of earlier posts, but I wanted to delve into his work in a little more depth here and comment on what strikes me as most interesting.  Lately, I’ve been looking back at some of the books I’ve read from various philosophers and have been wanting to revisit them so I can explore them in more detail and share how they connect to some of my own thoughts.  Alright…let’s begin.

Language, Meaning, & Their Probabilistic Attributes

He opens his Philosophical Investigations with a quote from St. Augustine’s Confessions that describes how a person learns a language.  St. Augustine believed that this process involved simply learning the names of objects (for example, by someone else pointing to the objects that are so named) and then stringing them together into sentences, and Wittgenstein points out that this is true to some trivial degree but it overlooks a much more fundamental relationship between language and the world.  For Wittgenstein, the meaning of words can not simply be attached to an object like a name can.  The meaning of a word or concept has much more of a fuzzy boundary as it depends on a breadth of context or associations with other concepts.  He analogizes this plurality in the meanings of words with the relationship between members of a family.  While there may be some resemblance between different uses of a word or concept, we aren’t able to formulate a strict definition to fully describe this resemblance.

One problem then, especially within philosophy, is that many people assume that the meaning of a word or concept is fixed with sharp boundaries (just like the fixed structure of words themselves).  Wittgenstein wants to dispel people of this false notion (much as Nietzsche tried to do before him) so that they can stop misusing language, as he believed that this misuse was the cause of many (if not all) of the major problems that had cropped up in philosophy over the centuries, particularly in metaphysics.  Since meaning is actually somewhat fluid and can’t be accounted for by any fixed structure, Wittgenstein thinks that any meaning that we can attach to these words is ultimately going to be determined by how those words are used.  Since he ties meaning with use, and since this use is something occurring in our social forms of life, it has an inextricably external character.  Thus, the only way to determine if someone else has a particular understanding of a word or concept is through their behavior, in response to or in association with the use of the word(s) in question.  This is especially important in the case of ambiguous sentences, which Wittgenstein explores to some degree.

Probabilistic Shared Understanding

Some of what Wittgenstein is trying to point out here are what I like to refer to as the inherently probabilistic attributes of language.  And it seems to me to be probabilistic for a few different reasons, beyond what Wittgenstein seems to address.  First, there is no guarantee that what one person means by a word or concept exactly matches the meaning from another person’s point of view, but at the very least there is almost always going to be some amount of semantic overlap (and possibly 100% in some cases) between the two individual’s intended meanings, and so there is going to be some probability that the speaker and the listener do in fact share a complete understanding.  It seems reasonable to argue that simpler concepts will have a higher probability of complete semantic overlap whereas more complex concepts are more likely to leave a gap in that shared understanding.  And I think this is true even if we can’t actually calculate what any of these probabilities are.

Now my use of the word meaning here differs from Wittgenstein’s because I am referring to something that is not exclusively shared by all parties involved and I am pointing to something that is internal (a subjective understanding of a word) rather than external (the shared use of a word).  But I think this move is necessary if we are to capture all of the attributes that people explicitly or implicitly refer to with a concept like meaning.  It seems better to compromise with Wittgenstein’s thinking and refer to the meaning of a word as a form of understanding that is intimately connected with its use, but which involves elements that are not exclusively external.

We can justify this version of meaning through an example.  If I help teach you how to ride a bike and explain that this activity is called biking or to bike, then we can use Wittgenstein’s conception of meaning and it will likely account for our shared understanding, and so I have no qualms about that, and I’d agree with Wittgenstein that this is perhaps the most important function of language.  But it may be the case that you have an understanding that biking is an activity that can only happen on Tuesdays, because that happened to be the day that I helped teach you how to ride a bike.  Though I never intended for you to understand biking in this way, there was no immediate way for me to infer that you had this misunderstanding on the day I was teaching you this.  I could only learn of this fact if you explicitly explained to me your understanding of the term with enough detail, or if I had asked you additional questions like whether or not you’d like to bike on a Wednesday (for example), with you answering “I don’t know how to do that as that doesn’t make any sense to me.”  Wittgenstein doesn’t account for this gap in understanding in his conception of meaning and I think this makes for a far less useful conception.

Now I think that Wittgenstein is still right in the sense that the only way to determine someone else’s understanding (or lack thereof) of a word is through their behavior, but due to chance as well as where our attention is directed at any given moment, we may never see the right kinds of behavior to rule out any number of possible misunderstandings, and so we’re apt to just assume that these misunderstandings don’t exist because language hides them to varying degrees.  But they can and in some cases do exist, and this is why I prefer a conception of meaning that takes these misunderstandings into account.  So I think it’s useful to see language as probabilistic in the sense that there is some probability of a complete shared understanding underlying the use of a word, and thus there is a converse probability of some degree of misunderstanding.

Language & Meaning as Probabilistic Associations Between Causal Relations

A second way of language being probabilistic is due to the fact that the unique meanings associated with any particular use of a word or concept as understood by an individual are derived from probabilistic associations between various inferred causal relations.  And I believe that this is the underlying cause of most of the problems that Wittgenstein was trying to address in this book.  He may not have been thinking about the problem in this way, but it can account for the fuzzy boundary problem associated with the task of trying to define the meaning of words since this probabilistic structure underlies our experiences, our understanding of the world, and our use of language such that it can’t be represented by static, sharp definitions.  When a person is learning a concept, like redness, they experience a number of observations and infer what is common to all of those experiences, and then they extract a particular subset of what is common and associate it with a word like red or redness (as opposed to another commonality like objectness, or roundness, or what-have-you).  But in most cases, separate experiences of redness are going to be different instantiations of redness with different hues, textures, shapes, etc., which means that redness gets associated with a large range of different qualia.

If you come across a new qualia that seems to more closely match previous experiences associated with redness rather than orangeness (for example), I would argue that this is because the brain has assigned a higher probability to that qualia being an instance of redness as opposed to, say, orangeness.  And the brain may very well test a hypothesis of the qualia matching the concept of redness versus the concept of orangeness, and depending on your previous experiences of both, and the present context of the experience, your brain may assign a higher probability of orangeness instead.  Perhaps if a red-orange colored object is mixed in with a bunch of unambiguously orange-colored objects, it will be perceived as a shade of orange (to match it with the rest of the set), but if the case were reversed and it were mixed in with a bunch of unambiguously red-colored objects, it will be perceived as a shade of red instead.

Since our perception of the world depends on context, then the meanings we assign to words or concepts also depends on context, but not only in the sense of choosing a different use of a word (like Wittgenstein argues) in some language game or other, but also by perceiving the same incoming sensory information as conceptually different qualia (like in the aforementioned case of a red-orange colored object).  In that case, we weren’t intentionally using red or orange in a different way but rather were assigning one word or the other to the exact same sensory information (with respect to the red-orange object) which depended on what else was happening in the scene that surrounded that subset of sensory information.  To me, this highlights how meaning can be fluid in multiple ways, some of that fluidity stemming from our conscious intentions and some of it from unintentional forces at play involving our prior expectations within some context which directly modify our perceived experience.

This can also be seen through Wittgenstein’s example of what he calls a duckrabbit, an ambiguous image that can be perceived as a duck or a rabbit.  I’ve taken the liberty of inserting this image here along with a copy of it which has been rotated in order to more strongly invoke the perception of a rabbit.  The first image no doubt looks more like a duck and the second image, more like a rabbit.

Now Wittgenstein says that when one is looking at the duckrabbit and sees a rabbit, they aren’t interpreting the picture as a rabbit but are simply reporting what they see.  But in the case where a person sees a duck first and then later sees a rabbit, Wittgenstein isn’t sure what to make of this.  However, he claims to be sure that whatever it is, it can’t be the case that the external world stays the same while an internal cognitive change takes place.  Wittgenstein was incorrect on this point because the external world doesn’t change (in any relevant sense) despite our seeing the duck or seeing the rabbit.  Furthermore, he never demonstrates why two different perceptions would require a change in the external world.  The fact of the matter is, you can stare at this static picture and ask yourself to see a duck or to see a rabbit and it will affect your perception accordingly.  This is partially accomplished by you mentally rotating the image in your imagination and seeing if that changes how well it matches one conception or the other, and since it matches both conceptions to a high degree, you can easily perceive it one way or the other.  Your brain is simply processing competing hypotheses to account for the incoming sensory information, and the top-down predictions of rabbitness or duckness (which you’ve acquired over past experiences) actually changes the way you perceive it with no change required in the external world (despite Wittgenstein’s assertion to the contrary).

To give yet another illustration of the probabilistic nature of language, just imagine the head of a bald man and ask yourself, if you were to add one hair at a time to this bald man’s head, at what point does he lose the property of baldness?  If hairs were slowly added at random, and you could simply say “Stop!  Now he’s no longer bald!” at some particular time, there’s no doubt in my mind that if this procedure were repeated (even if the hairs were added non-randomly), you would say “Stop!  Now he’s no longer bald!” at a different point in this transition.  Similarly if you were looking at a light that was changing color from red to orange, and were asked to say when the color has changed to orange, you would pick a point in the transition that is within some margin of error but it wouldn’t be an exact, repeatable point in the transition.  We could do this thought experiment with all sorts of concepts that are attached to words, like cat and dog and, for example, use a computer graphic program to seamlessly morph a picture of a cat into a picture of a dog and ask at what point did the cat “turn into” a dog?  It’s going to be based on a probability of coincident features that you detect which can vary over time.  Here’s a series of pictures showing a chimpanzee morphing into Bill Clinton to better illustrate this point:

At what point do we stop seeing a picture of a chimpanzee and start seeing a picture of something else?  When do we first see Bill Clinton?  What if I expanded this series of 15 images into a series of 1000 images so that this transition happened even more gradually?  It would be highly unlikely to pick the exact same point in the transition two times in a row if the images weren’t numbered or arranged in a grid.  We can analogize this phenomenon with an ongoing problem in science, known as the species problem.  This problem can be described as the inherent difficulty of defining exactly what a species is, which is necessary if one wants to determine if and when one species evolves into another.  This problem occurs because the evolutionary processes giving rise to new species are relatively slow and continuous whereas sorting those organisms into sharply defined categories involves the elimination of that generational continuity and replacing it with discrete steps.

And we can see this effect in the series of images above, where each picture could represent some large number of generations in an evolutionary timeline, where each picture/organism looks roughly like the “parent” or “child” of the picture/organism that is adjacent to it.  Despite this continuity, if we look at the first picture and the last one, they look like pictures of distinct species.  So if we want to categorize the first and last picture as distinct species, then we create a problem when trying to account for every picture/organism that lies in between that transition.  Similarly words take on an appearance of strict categorization (of meaning) when in actuality, any underlying meaning attached is probabilistic and dynamic.  And as Wittgenstein pointed out, this makes it more appropriate to consider meaning as use so that the probabilistic and dynamic attributes of meaning aren’t lost.

Now you may think you can get around this problem of fluidity or fuzzy boundaries with concepts that are simpler and more abstract, like the concept of a particular quantity (say, a quantity of four objects) or other concepts in mathematics.  But in order to learn these concepts in the first place, like quantity, and then associate particular instances of it with a word, like four, one had to be presented with a number of experiences and infer what was common to all of those experiences (as was the case with redness mentioned earlier).  And this inference (I would argue) involves a probabilistic process as well, it’s just that the resulting probability of our inferring particular experiences as an instance of four objects is incredibly high and therefore repeatable and relatively unambiguous.  Therefore that kind of inference is likely to be sustained no matter what the context, and it is likely to be shared by two individuals with 100% semantic overlap (i.e. it’s almost certain that what I mean by four is exactly what you mean by four even though this is almost certainly not the case for a concept like love or consciousness).  This makes mathematical concepts qualitatively different from other concepts (especially those that are more complex or that more closely map on to reality), but it doesn’t negate their having a probabilistic attribute or foundation.

Looking at the Big Picture

Though this discussion of language and meaning is not an exhaustive analysis of Wittgenstein’s Philosophical Investigations, it represents an analysis of the main theme present throughout.  His main point was to shed light on the disparity between how we often think of language and how we actually use it.  When we stray away from the way it is actually used in our everyday lives, in one form of social life or other, and instead misuse it such as in philosophy, this creates all sorts of problems and unwarranted conclusions.  He also wants his readers to realize that the ultimate goal of philosophy should not be to try and make metaphysical theories and deep explanations underlying everyday phenomena, since these are often born out of unwarranted generalizations and other assumptions stemming from how our grammar is structured.  Instead we ought to subdue these temptations to generalize and subdue our temptations to be dogmatic and instead use philosophy as a kind of therapeutic tool to keep our abstract thinking in check and to better understand ourselves and the world we live in.

Although I disagree with some of Wittgenstein’s claims about cognition (in terms of how intimately it is connected to the external world) and take some issue with his arguably less useful conception of meaning, he makes a lot of sense overall.  Wittgenstein was clearly hitting upon a real difference between the way actual causal relations in our experience are structured and how those relations are represented in language.  Personally, I think that work within philosophy is moving in the right direction if the contributions made therein lead us to make more successful predictions about the causal structure of the world.  And I believe this to be so even if this progress includes generalizations that may not be exactly right.  As long as we can structure our thinking to make more successful predictions, then we’re moving forward as far as I’m concerned.  In any case, I liked the book overall and thought that the interlocutory style gave the reader a nice break from the typical form seen in philosophical argumentation.  I highly recommend it!

Predictive Processing: Unlocking the Mysteries of Mind & Body (Part I)

I’ve been away from writing for a while because I’ve had some health problems relating to my neck.  A few weeks ago I had double-cervical-disc replacement surgery and so I’ve been unable to write and respond to comments and so forth for a little while.  I’m in the second week following my surgery now and have finally been able to get back to writing, which feels very good given that I’m unable to lift or resume martial arts for the time being.  Anyway, I want to resume my course of writing beginning with a post-series that pertains to Predictive Processing (PP) and the Bayesian brain.  I’ve written one post on this topic a little over a year ago (which can be found here) as I’ve become extremely interested in this topic for the last several years now.

The Predictive Processing (PP) theory of perception shows a lot of promise in terms of finding an overarching schema that can account for everything that the brain seems to do.  While its technical application is to account for the acts of perception and active inference in particular, I think it can be used more broadly to account for other descriptions of our mental life such as beliefs (and knowledge), desires, emotions, language, reasoning, cognitive biases, and even consciousness itself.  I want to explore some of these relationships as viewed through a PP lens more because I think it is the key framework needed to reconcile all of these aspects into one coherent picture, especially within the evolutionary context of an organism driven to survive.  Let’s begin this post-series by first looking at how PP relates to perception (including imagination), beliefs, emotions, and desires (and by extension, the actions resulting from particular desires).

Within a PP framework, beliefs can be best described as simply the set of particular predictions that the brain employs which encompass perception, desires, action, emotion, etc., and which are ultimately mediated and updated in order to reduce prediction errors based on incoming sensory evidence (and which approximates a Bayesian form of inference).  Perception then, which is constituted by a subset of all our beliefs (with many of them being implicit or unconscious beliefs), is more or less a form of controlled hallucination in the sense that what we consciously perceive is not the actual sensory evidence itself (not even after processing it), but rather our brain’s “best guess” of what the causes for the incoming sensory evidence are.

Desires can be best described as another subset of one’s beliefs, and a set of beliefs which has the special characteristic of being able to drive action or physical behavior in some way (whether driving internal bodily states, or external ones that move the body in various ways).  Finally, emotions can be thought of as predictions pertaining to the causes of internal bodily states and which may be driven or changed by changes in other beliefs (including changes in desires or perceptions).

When we believe something to be true or false, we are basically just modeling some kind of causal relationship (or its negation) which is able to manifest itself into a number of highly-weighted predicted perceptions and actions.  When we believe something to be likely true or likely false, the same principle applies but with a lower weight or precision on the predictions that directly corresponds to the degree of belief or disbelief (and so new sensory evidence will more easily sway such a belief).  And just like our perceptions, which are mediated by a number of low and high-level predictions pertaining to incoming sensory data, any prediction error that the brain encounters results in either updating the perceptual predictions to new ones that better reduce the prediction error and/or performing some physical action that reduces the prediction error (e.g. rotating your head, moving your eyes, reaching for an object, excreting hormones in your body, etc.).

In all these cases, we can describe the brain as having some set of Bayesian prior probabilities pertaining to the causes of incoming sensory data, and these priors changing over time in response to prediction errors arising from new incoming sensory evidence that fails to be “explained away” by the predictive models currently employed.  Strong beliefs are associated with high prior probabilities (highly-weighted predictions) and therefore need much more counterfactual sensory evidence to be overcome or modified than for weak beliefs which have relatively low priors (low-weighted predictions).

To illustrate some of these concepts, let’s consider a belief like “apples are a tasty food”.  This belief can be broken down into a number of lower level, highly-weighted predictions such as the prediction that eating a piece of what we call an “apple” will most likely result in qualia that accompany the perception of a particular satisfying taste, the lower level prediction that doing so will also cause my perception of hunger to change, and the higher level prediction that it will “give me energy” (with these latter two predictions stemming from the more basic category of “food” contained in the belief).  Another prediction or set of predictions is that these expectations will apply to not just one apple but a number of apples (different instances of one type of apple, or different types of apples altogether), and a host of other predictions.

These predictions may even result (in combination with other perceptions or beliefs) in an actual desire to eat an apple which, under a PP lens could be described as the highly weighted prediction of what it would feel like to find an apple, to reach for an apple, to grab it, to bite off a piece of it, to chew it, and to swallow it.  If I merely imagine doing such things, then the resulting predictions will necessarily carry such a small weight that they won’t be able to influence any actual motor actions (even if these imagined perceptions are able to influence other predictions that may eventually lead to some plan of action).  Imagined perceptions will also not carry enough weight (when my brain is functioning normally at least) to trick me into thinking that they are actual perceptions (by “actual”, I simply mean perceptions that correspond to incoming sensory data).  This low-weighting attribute of imagined perceptual predictions thus provides a viable way for us to have an imagination and to distinguish it from perceptions corresponding to incoming sensory data, and to distinguish it from predictions that directly cause bodily action.  On the other hand, predictions that are weighted highly enough (among other factors) will be uniquely capable of affecting our perception of the real world and/or instantiating action.

This latter case of desire and action shows how the PP model takes the organism to be an embodied prediction machine that is directly influencing and being influenced by the world that its body interacts with, with the ultimate goal of reducing any prediction error encountered (which can be thought of as maximizing Bayesian evidence).  In this particular example, the highly-weighted prediction of eating an apple is simply another way of describing a desire to eat an apple, which produces some degree of prediction error until the proper actions have taken place in order to reduce said error.  The only two ways of reducing this prediction error are to change the desire (or eliminate it) to one that no longer involves eating an apple, and/or to perform bodily actions that result in actually eating an apple.

Perhaps if I realize that I don’t have any apples in my house, but I realize that I do have bananas, then my desire will change to one that predicts my eating a banana instead.  Another way of saying this is that my higher-weighted prediction of satisfying hunger supersedes my prediction of eating an apple specifically, thus one desire is able to supersede another.  However, if the prediction weight associated with my desire to eat an apple is high enough, it may mean that my predictions will motivate me enough to avoid eating the banana, and instead to predict what it is like to walk out of my house, go to the store, and actually get an apple (and therefore, to actually do so).  Furthermore, it may motivate me to predict actions that lead me to earn the money such that I can purchase the apple (if I don’t already have the money to do so).  To do this, I would be employing a number of predictions having to do with performing actions that lead to me obtaining money, using money to purchase goods, etc.

This is but a taste of what PP has to offer, and how we can look at basic concepts within folk psychology, cognitive science, and theories of mind in a new light.  Associated with all of these beliefs, desires, emotions, and actions (which again, are simply different kinds of predictions under this framework), is a number of elements pertaining to ontology (i.e. what kinds of things we think exist in the world) and pertaining to language as well, and I’d like to explore this relationship in my next post.  This link can be found here.

Learning About Our Cognitive Biases: An Antidote to Irrational & Dogmatic Thinking (Part 3 of 3)

This is part 3 of 3 of this post.  Click here to read part 2.

Reactive Devaluation

Studies have shown that if a claim is believed to have come from a friend or ally, the person receiving it will be more likely to think that it has merit and is truthful.  Likewise, if it is believed to have come from an enemy or some member of the opposition, it is significantly devalued.  This bias is known as reactive devaluation.  A few psychologists actually determined that the likeabillity of the source of the message is one of the key factors involved with this effect, and people will actually value information coming from a likeable source more than a source they don’t like, with the same order of magnitude that they would value information coming from an expert versus a non-expert.  This is quite troubling.  We’ve often heard about how political campaigns and certain debates are seen more as popularity contests than anything else, and this bias is likely a primary reason for why this is often the case.

Unfortunately, a large part of society has painted a nasty picture of atheism, skepticism, and the like.  As it turns out, people who do not believe in a god (mainly the Christian god) are the least trusted minority in America, according to a sociological study performed a few years ago (Johanna Olexy and Lee Herring, “Atheists Are Distrusted: Atheists Identified as America’s Most Distrusted Minority, According to Sociological Study,” American Sociological Association News, May 3, 2006).  Regarding the fight against dogmatism, the rational thinker needs to carefully consider how they can improve their likeability to the recipients of their message, if nothing else, by going above and beyond to remain kind, respectful, and maintain a positive and uplifting attitude during their argument presentation.  In any case, the person arguing will always be up against any societal expectations and preferences that may reduce that person’s likeability, so there’s also a need to remind others as well as ourselves about what is most important when discussing an issue — the message rather than the messenger.

The Backfire Effect & Psychological Reactance

There have already been several cognitive biases mentioned that interfere with people’s abilities to accept new evidence that contradicts their beliefs.  To make matters worse, psychologists have discovered that people often react to disconfirming evidence by actually strengthening their beliefs.  This is referred to as the backfire effect.  This can make refutations futile most of the time, but there are some strategies that help to combat this bias.  The bias is largely exacerbated by a person’s emotional involvement and the fact that people don’t want to appear to be unintelligent or incorrect in front of others.  If the debating parties let tempers cool down before resuming the debate, this can be quite helpful regarding the emotional element.  Additionally, if a person can show their opponent how accepting the disconfirming evidence will benefit them, they’ll be more likely to accept it.  There are times when some of the disconfirming evidence mentioned is at least partially absorbed by the person, and they just need some more time in a less tense environment to think things over a bit.  If the situation gets too heated, or if a person risks losing face with peers around them, the ability to persuade that person only decreases.

Another similar cognitive bias is referred to as reactance, which is basically a motivational reaction to instances of perceived infringement of behavioral freedoms.  That is, if a person feels that someone is taking away their choices or limiting the number of them, such as in cases where they are being heavily pressured into accepting a different point of view, they will often respond defensively.  They may feel that freedoms are being taken away from them, and it is only natural for a person to defend whatever freedoms they see themselves having or potentially losing.  Whenever one uses reverse psychology, they are in fact playing on at least an implicit knowledge of this reactance effect.  Does this mean that rational thinkers should use reverse psychology to persuade dogmatists to accept reason and evidence?  I personally don’t think that this is the right approach because this could also backfire and I would prefer to be honest and straightforward, even if this results in less efficacy.  At the very least however, one needs to be aware of this bias and needs to be careful with how they phrase their arguments, how they present the evidence, and to maintain a calm and respectful attitude during these discussions, so that the other person doesn’t feel the need to defend themselves with the cost of ignoring evidence.

Pareidolia & Other Perceptual Illusions

Have you ever seen faces of animals or people while looking at clouds, shadows, or other similar situations?  The brain has many pattern recognition modules and will often respond erroneously to vague or even random stimuli, such that we perceive something familiar, even when it isn’t actually there.  This is called pareidolia, and is a type of apophenia (i.e. seeing patterns in random data).  Not surprisingly, many people have reported instances of seeing various religious imagery and so forth, most notably the faces of prominent religious figures, from ordinary phenomena.  People have also erroneously heard “hidden messages” in records when playing them in reverse, and similar illusory perceptions.  This results from the fact that the brain often fills in gaps and if one expects to see a pattern (even if unconsciously driven by some emotional significance), then the brain’s pattern recognition modules can often “over-detect” or result in false positives by too much sensitivity and by conflating unconscious imagery with one’s actual sensory experiences, leading to a lot of distorted perceptions.  It goes without saying that this cognitive bias is perfect for reinforcing superstitious or supernatural beliefs, because what people tend to see or experience from this effect are those things that are most emotionally significant to them.  After it occurs, people believe that what they saw or heard must have been real and therefore significant.

Most people are aware that hallucinations occur in some people from time to time, under certain neurological conditions (generally caused by an imbalance of neurotransmitters).  A bias like pareidolia can effectively produce similar experiences, but without requiring the more specific neurological conditions that a textbook hallucination requires.  That is, the brain doesn’t need to be in any drug-induced state nor does it need to be physically abnormal in any way for this to occur, making it much more common than hallucinations.  Since pareidolia is also compounded with one’s confirmation bias, and since the brain is constantly implementing cognitive dissonance reduction mechanisms in the background (as mentioned earlier), this can also result in groups of people having the same illusory experience, specifically if the group shares the same unconscious emotional motivations for “seeing” or experiencing something in particular.  These circumstances along with the power of suggestion from even just one member of the group can lead to what are known as collective hallucinations.  Since collective hallucinations like these inevitably lead to a feeling of corroboration and confirmation between the various people experiencing it (say, seeing a “spirit” or “ghost” of someone significant), they can reinforce one another’s beliefs, despite the fact that the experience was based on a cognitive illusion largely induced by powerful human emotions.  It’s likely no coincidence that this type of group phenomenon seems to only occur with members of a religion or cult, specifically those that are in a highly emotional and synchronized psychological state.  There have been many cases of large groups of people from various religions around the world claiming to see some prominent religious figure or other supernatural being, illustrating just how universal this phenomena is within a highly emotional group context.

Hyperactive Agency Detection

There is a cognitive bias that is somewhat related to the aforementioned perceptual illusion biases which is known as hyperactive agency detection.  This bias refers to our tendency to erroneously assign agency to events that happen without an agent causing them.  Human beings all have a theory of mind that is based in part on detecting agency, where we assume that other people are causal agents in the sense that they have intentions and goals just like we do.  From an evolutionary perspective, we can see that our ability to recognize that others are intentional agents allows us to better predict another person’s behavior which is extremely beneficial to our survival (notably in cases where we suspect others are intending to harm us).

Unfortunately our brain’s ability to detect agency is hyperactive in that it errs on the side of caution by over-detecting possible agency, as opposed to under-detecting (which could negatively affect our survival prospects).  As a result, people will often ascribe agency to things and events in nature that have no underlying intentional agent.  For example, people often anthropomorphize (or implicitly assume agency to) machines and get angry when they don’t work properly (such as an automobile that breaks down while driving to work), often with the feeling that the machine is “out to get us”, is “evil”, etc.  Most of the time, if we have feelings like this, they are immediately checked and balanced by our rational minds that remind us that “it’s only a car”, or “it’s not conscious”, etc.  Similarly, when natural disasters or other similar events occur, our hyperactive agency detection snaps into gear, trying to find “someone to blame”.  This cognitive bias explains quite well, at least as a contributing factor as to why so many ancient cultures assumed that there were gods that caused earthquakes, lightning, thunder, volcanoes, hurricanes, etc.  Quite simply, they needed to ascribe the events as having been caused by someone.

Likewise, if we are walking in a forest and hear some strange sounds in the bushes, we may often assume that some intentional agent is present (whether another person or other animal), even though it may simply be the wind that is causing the noise.  Once again, we can see in this case the evolutionary benefit of this agency detection, even with the occasional “false positive”, the noise in the bushes could very well be a predator or other source of danger, so it is usually better for our brains to assume that the noise is coming from an intentional agent.  It’s also entirely possible that even in cases where the source of sound was determined to be the wind, early cultures may have ascribed an intentional stance to the wind itself (e.g. a “wind” god, etc.).  In all of these cases, we can see how our hyperactive agency detection can lead to irrational, theistic and other supernatural belief systems, and we need to be aware of such a bias when evaluating our intuitions of how the world works.

Risk Compensation

It is only natural that the more a person feels protected from various harms, the less careful they tend to behave, and vice versa.  This apparent tendency, sometimes referred to as risk compensation, is often a harmless approach because generally speaking, if one is well protected from harm, they do have less to worry about than one who is not, and thus they can take greater relative risks as a result of that larger cushion of safety.  Where this tends to cause a problem however, is in cases when the perceived level of protection is far higher than it actually is.  The worst case scenario that comes to mind is if a person that appeals to the supernatural thinks that it doesn’t matter what happens to them or that no harm can come to them because of some belief in a supernatural source of protection, let alone one that they believe provides the most protection possible.  In this scenario, their level of risk compensation is fully biased to a negative extreme, and they will be more likely to behave irresponsibly because they don’t have realistic expectations of the consequences of their actions.  In a post-enlightenment society, we’ve acquired a higher responsibility to heed the knowledge gained from scientific discoveries so that we can behave more rationally as we learn more about the consequences of our actions.

It’s not at all difficult to see how the effects of various religious dogma on one’s level of risk compensation can inhibit that society from making rational, responsible decisions.  We have several serious issues plaguing modern society including those related to environmental sustainability, climate change, pollution, war, etc.  If believers in the supernatural have an attitude that everything is “in God’s hands” or that “everything will be okay” because of their belief in a protective god, they are far less likely to take these kinds of issues seriously because they fail to acknowledge the obvious harm on everyone in society.  What’s worse is that not only are dogmatists reducing their own safety, but they’re also reducing the safety of their children, and of everyone else in society that is trying to behave rationally with realistic expectations.  If we had two planets, one for rational thinkers, and one for dogmatists, this would no longer be a problem for everyone.  The reality is that we share one planet and thus we all suffer the consequences of any one person’s irresponsible actions.  If we want to make more rational decisions, especially those related to the safety of our planet’s environment, society, and posterity, people need to adjust their risk compensation such that it is based on empirical evidence using a rational, proven scientific methodology.  This point clearly illustrates the need to phase out supernatural beliefs since false beliefs that don’t correspond with reality can be quite dangerous to everybody regardless of who carries the beliefs.  In any case, when one is faced with the choice between knowledge versus ignorance, history has demonstrated which choice is best.

Final thoughts

The fact that we are living in an information age with increasing global connectivity, and the fact that we are living in a society that is becoming increasingly reliant on technology, will likely help to combat the ill effects of these cognitive biases.  These factors are making it increasingly difficult to hide one’s self from the evidence and the proven efficacy of using the scientific method in order to form accurate beliefs regarding the world around us.  Societal expectations are also changing as a result of these factors, and it is becoming less and less socially acceptable to be irrational, dogmatic, and to not take scientific methodology more seriously.  In all of these cases, having knowledge about these cognitive biases will help people to combat them.  Even if we can’t eliminate the biases, we can safeguard ourselves by preparing for any potential ill effects that those biases may produce.  This is where reason and science come into play, providing us with the means to counter our cognitive biases by applying a rational skepticism to all of our beliefs, and by using a logical and reliable methodology based on empirical evidence to arrive at a belief that we can be justifiably confident (though never certain) in.  As Darwin once said, “Ignorance more frequently begets confidence than does knowledge; it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science.”  Science has constantly been ratcheting our way toward a better understanding of the universe we live in, despite the fact that the results we obtain from science are often at odds with our own intuitions about how we think the world is.  Only relatively recently has science started to provide us with information regarding why our intuitions are often at odds with the scientific evidence.

We’ve made huge leaps within neuroscience, cognitive science, and psychology, and these discoveries are giving us the antidote that we need in order to reduce or eliminate irrational and dogmatic thinking.  Furthermore, those that study logic have an additional advantage in that they are more likely to spot fallacious arguments that are used to support this or that belief, and thus they are less likely to be tricked or persuaded by arguments that often appear to be sound and strong, but actually aren’t.  People fall prey to fallacious arguments all the time, and it is mostly because they haven’t learned how to spot them (which courses in logic and other reasoning can help to mitigate).  Thus, overall I believe it is imperative that we integrate knowledge concerning our cognitive biases into our children’s educational curriculum, starting at a young age (in a format that is understandable and engaging of course).  My hope is that if we start to integrate cognitive education (and complementary courses in logic and reasoning) as a part of our foundational education curriculum, we will see a cascade effect of positive benefits that will guide our society more safely into the future.

Learning About Our Cognitive Biases: An Antidote to Irrational & Dogmatic Thinking (Part 2 of 3)

This is part 2 of 3 of this post.  Click here to read part 1.

The Feeling of Certainty & The Overconfidence Effect

There are a lot of factors that affect how certain we feel that one belief or another is in fact true.  One factor that affects this feeling of certainty is what I like to call the time equals truth fallacy.  With this cognitive bias, we tend to feel more certain about our beliefs as time progresses, despite not gaining any new evidence to support those beliefs. Since the time with a particular belief is the only factor involved here, it will have greater effects on those that are relatively isolated or sheltered from new information.  So if a person has been indoctrinated with a particular set of beliefs (let alone irrational beliefs), and they are effectively “cut off” from any sources of information that could serve to refute those beliefs, it will become increasingly more difficult to persuade them later on.  This situation sounds all too familiar, as it is often the case that dogmatic groups will isolate themselves and shelter their members from outside influences, for this very reason.  If the group can isolate their members for long enough (or the members actively isolate themselves), the dogma effectively gets burned into them, and the brainwashing is far more successful.  That this cognitive bias has been exploited by various dogmatic/religious leaders throughout history is hardly surprising considering how effective it is.

Though I haven’t researched or come across any proposed evolutionary reasons behind the development of this cognitive bias, I do have at least one hypothesis pertaining to its origin.  I’d say that this bias may have resulted from the fact that the beliefs that matter most (from an evolutionary perspective) are those that are related to our survival goals (e.g. finding food sources or evading a predator).  So naturally, any beliefs that didn’t cause noticeable harm to an organism weren’t correlated with harm, and thus were more likely to be correct (i.e. keep using whatever works and don’t fix what ain’t broke).  However, once we started adding many more beliefs to our repertoire, specifically those that didn’t directly affect our survival (including many beliefs in the supernatural), the same cognitive rules and heuristics were still being applied as before, although these new types of beliefs (when false) haven’t been naturally selected against, because they haven’t been detrimental enough to our survival (at least not yet, or not enough to force a significant evolutionary change).  So once again, evolution may have produced this bias for very advantageous reasons, but it is a sub-optimal heuristic (as always) and one that has become a significant liability after we started evolving culturally as well.

Another related cognitive bias, and one that is quite well established, is the overconfidence effect, whereby a person’s subjective confidence level or feeling of confidence in his or her judgements or beliefs are predictably higher than the actual objective accuracy of those judgements and beliefs. In a nutshell, people tend to have far more confidence in their beliefs and decisions than is warranted.  A common example cited to illustrate the intensity of this bias pertains to people taking certain quizzes, claiming to be “99% certain” about their answers to certain questions, and then finding out afterwards that they were wrong about half of the time.  In other cases, this overconfidence effect can be even worse.

In a sense, the feeling of certainty is like an emotion, which, like our other emotions, occur as a natural reflex, regardless of the cause, and independently of reason.  Just like other emotions such as anger, pleasure, or fear, the feeling of certainty can be produced by a seizure, certain drugs, and even electrical stimulation of certain regions of the brain.  In all of these cases, even when no particular beliefs are being thought about, the brain can produce a feeling of certainty nevertheless.  Research has shown that the feeling of knowing or certainty can also be induced through various brain washing and trance-inducing techniques such as a high repetition of words, rhythmic music, sleep deprivation (or fasting), and other types of social/emotional manipulation.  It is hardly a coincidence that many religions often employ a number of these techniques within their repertoire.

The most important point to take away from learning about these “confidence/certainty” biases is to understand that the feeling of certainty is not a reliable way of determining the accuracy of one’s beliefs.  Furthermore, one must realize that no matter how certain we may feel about a particular belief, we could be wrong, and often times are.  Dogmatic belief systems such as those found in many religions are often propagated by a misleading and mistaken feeling of certainty, even if that feeling is more potent than any ever experienced before.  Often times when people ascribing to these dogmatic belief systems are questioned about the lack of empirical evidence supporting their beliefs, even if all of their arguments have been refuted, they simply reply by saying “I just know.”  Irrational, and entirely unjustified responses like these illustrate the dire need for people to become aware of just how fallible their feeling of certainty can be.

Escalation of Commitment

If a person has invested their whole lives in some belief system, even if they encounter undeniable evidence that their beliefs were wrong, they are more likely to ignore it or rationalize it away than to modify their beliefs, and thus they will likely continue investing more time and energy in those false beliefs.  This is due to an effect known as escalation of commitment.  Basically, the higher the cumulative investment in a particular course of action, the more likely someone will feel justified in continuing to increase that investment, despite new evidence showing them that they’d be better off abandoning that investment and cutting their losses.  When it comes to trying to “convert” a dogmatic believer into a more rational, free thinker, this irrational tendency severely impedes any chance of success, more so when that person has been investing themselves in the dogma for a longer period of time, since they ultimately have a lot more to lose.  To put it another way, a person’s religion is often a huge part of their personal identity, so regardless of any undeniable evidence presented that refutes their beliefs, in order to accept that evidence they will have to abandon a large part of themselves which is obviously going to make that acceptance and intellectual honesty quite difficult to implement.  Furthermore, if a person’s family or friends have all invested in the same false beliefs as themselves, even if that person discovers that those beliefs are wrong, they risk their entire family and/or friends rejecting them and then forever losing those relationships that are dearest to them.  We can also see how this escalation of commitment is further reinforced by the time equals truth fallacy mentioned earlier.

Negativity Bias

When I’ve heard various Christians proselytizing to myself or others, one tactic that I’ve seen used over and over again is the use of fear-mongering with theologically based threats of eternal punishment and torture.  If we don’t convert, we’re told, we’re doomed to burn in hell for eternity.  Their incessant use of this tactic suggests that it was likely effective on themselves contributing to their own conversion (it was in fact one of the reasons for my former conversion to Christianity).  Similar tactics have been used in some political campaigns in order to persuade voters by deliberately scaring them into taking one position over another.  Though this strategy is more effective on some than others, there is an underlying cognitive bias in all of us that contributes to its efficacy.  This is known as the negativity bias.  With this bias, information or experiences that are of a more negative nature will tend to have a greater effect on our psychological states and resulting behavior when compared to positive information or experiences that are equally intense.

People will remember threats to their well-being a lot more than they remember pleasurable experiences.  This looks like another example of a simple survival strategy implemented in our brains.  Similar to my earlier hypothesis regarding the time equals truth heuristic, it is far more important to remember and avoid dangerous or life-threatening experiences than it is to remember and seek out pleasurable experiences when all else is equal.  It only takes one bad experience to end a person’s life, whereas it is less critical to experience some minimum number of pleasurable experiences.  Therefore, it makes sense as an evolutionary strategy to allocate more cognitive resources and memory for avoiding the dangerous and negative experiences, and a negativity bias helps us to accomplish that.

Unfortunately, just as with the time equals truth bias, since our cultural evolution has involved us adopting certain beliefs that no longer pertain directly to our survival, the heuristic is often being executed improperly or in the wrong context.  This increases the chances that we will fall prey to adopting irrational, dogmatic belief systems when they are presented to us in a way that utilizes fear-mongering and various forms of threats to our well-being.  When it comes to conceiving of an overtly negative threat, can anyone imagine one more significant than the threat of eternal torture?  It is, by definition, supposed to be the worst scenario imaginable, and thus it is the most effective kind of threat to play on our negativity bias, and lead to irrational beliefs.  If the dogmatic believer is also convinced that their god can hear their thoughts, they’re also far less likely to think about their dogmatic beliefs critically, for they have no mental privacy to do so.

This bias in particular reminds me of Blaise Pascal’s famous Wager, which basically asserts that it is better to believe in God than to risk the consequences of not doing so.  If God doesn’t exist, we have “only” a finite loss (according to Pascal).  If God does exist, then one’s belief leads to an eternal reward, and one’s disbelief leads to an eternal punishment.  Therefore, it is only logical (Pascal asserts) that one should believe in God, since it is the safest position to adopt.  Unfortunately, Pascal’s premises are not sound, and therefore the conclusion is invalid.  For one, is belief in God sufficient enough to avoid the supposed eternal punishment, or does it have to be more than that, such as some other religious tenets, declarations, or rituals?  Second, which god should one believe in?  There have been thousands of gods proposed by various believers over several millennia, and there were obviously many more than we currently have records of in history, therefore Pascal’s Wager merely narrows it down to a choice of several thousand known gods.  Third, even if we didn’t have to worry about choosing the correct god, if it turned out that there was no god, would a life with that belief not have carried a significant cost?  If the belief also involved a host of dogmatic moral prescriptions, rituals, and other specific ways to live one’s life, etc., including perhaps the requirement to abstain from many pleasurable human experiences, this cost could be quite great.  Furthermore, if one applies Pascal’s wager to any number of theoretical possibilities that posit a possible infinite loss over a finite loss, one would be inclined to apply the same principle to any of those possibilities, which is obviously irrational.  It is clear that Pascal hadn’t thought this one through very well, and I wouldn’t doubt that his judgement during this apologetic formulation was highly clouded by his own negativity bias (since the fear of punishment seems to be the primary focus of his “wager”).  As was mentioned earlier, we can see how effective this bias has been on a number of religious converts, and we need to be diligent about watching out for information that is presented to us with threatening strings attached, because it can easily cloud our judgement and lead to the adoption of irrational beliefs and dogma.

Belief Bias & Argument Proximity Effects

When we analyze arguments, we often judge the strength of those arguments based on how plausible their conclusion is, rather than how well those arguments support that conclusion.  In other words, people tend to focus their attention on the conclusion of an argument, and if they think that the conclusion is likely to be true (based on their prior beliefs), this affects their perspective of how strong or weak the arguments themselves appear to be.  This is obviously an incorrect way to analyze arguments, as within logic, only the arguments themselves can be used to determine the validity of the conclusion, not the other way around.  This implies that what is intuitive to us is often incorrect, and thus our cognitive biases are constantly at odds with logic and rationality.  This is why it takes a lot of practice to learn how to apply logic effectively in one’s thinking.  It just doesn’t come naturally, even though we often think it does.

Another cognitive deficit regarding how people analyze arguments irrationally is what I like to call the argument proximity effect.  Basically, when strong arguments are presented along with weak arguments that support a particular conclusion, the strong arguments will often appear to be weaker or less persuasive because of their proximity or association with the weaker ones.  This is partly due to the fact that if a person thinks that they can defeat the moderate or weak arguments, they will often believe that they can also defeat the stronger argument, if only they were given enough time to do so.  It is as if the strong arguments become “tainted” by the weaker ones, even though the opposite is true since the arguments are independent of one another.  That is, when a person has a number of arguments to support their position, a combination of strong and weak arguments is always better than only having the strong arguments, because there are simply more arguments that need to be addressed and rebutted in the former than in the latter.  Another reason for this effect is that the presence of weak arguments also weakens the credibility of the person presenting them, and so then the stronger arguments aren’t taken as seriously by the recipient.  Just as with our belief bias, this cognitive deficit is ultimately caused by not employing logic properly, if at all.  Making people aware of this cognitive flaw is only half the battle, as once again we also need to learn about logic and how to apply it effectively in our thinking.

To read part 3 of 3, click here.

Learning About Our Cognitive Biases: An Antidote to Irrational & Dogmatic Thinking (Part 1 of 3)

It is often surprising to think about the large number of people that still ascribe to dogmatic beliefs, despite our living in a post-enlightenment age of science, reason, and skeptical inquiry.  We have a plethora of scientific evidence and an enormous amount of acquired data illustrating just how fallacious various dogmatic belief systems are, as well as how dogmatism in general is utterly useless for gaining knowledge or making responsible decisions throughout one’s life.  We also have an ample means of distributing this valuable information to the public through academic institutions, educational television programming, online scientific resources, books, etc.  Yet, we still have an incredibly large number of people preferably believing in various dogmatic claims (and with a feeling of “certainty”) over those supported by empirical evidence and reason.  Furthermore, when some of these people are presented with the scientific evidence that refutes their dogmatic belief, they outright deny that the evidence exists or they simply rationalize it away.  This is a very troubling problem in our society as this kind of muddled thinking often prevents many people from making responsible, rational decisions.  Irrational thinking in general has caused many people to vote for political candidates for all the wrong reasons.  It has caused many people to raise their own children in ways that promote intolerance, prejudice, and that undervalue if not entirely abhor invaluable intellectual virtues such as rational skepticism and critical thought.
 .
Some may reasonably assume that (at least) many of these irrational belief systems and behaviors are simply a result of having low self-esteem, inadequate education and/or low intelligence, and it turns out that several dozen sociological studies have found evidence that supports this line of reasoning.  That is, a person that has lower self-esteem, lower education, and/or lower intelligence is more likely to be religious and dogmatic.  However, there is clearly much more to it than that, especially since there are still a lot of people that obtain these irrational belief systems that are also well educated and intelligent.  Furthermore, every human being is quite often irrational in their thinking.  So what else could be contributing to this irrationality (and dogmatism)?  Well, the answer seems to lie in the realms of cognitive science and psychology.  I’ve decided to split this post into three parts, because there is a lot of information I’d like to cover.  Here’s the link to part 2 of 3, which can also be found at the end of this post.

Cognitive Biases

Human beings are very intelligent relative to most other species on this planet, however, we are still riddled with various flaws in our brains which drastically reduce our ability to think logically or rationally.  This isn’t surprising after one recognizes that our brains are the product of evolution, and thus they weren’t “designed” in any way at all, let alone to operate logically or rationally.  Instead, what we see in human beings is a highly capable and adaptable brain, yet one with a number of cognitive biases and shortcomings.  Though a large number (if not all) of these biases developed as a sub-optimal yet fairly useful survival strategy, specifically within the context of our evolutionary past, most of them have become a liability in our modern civilization, and often impede our intellectual development as individuals and as a society.  A lot of these cognitive biases serve (or once served) as an effective way at making certain decisions rather quickly, that is, the biases have effectively served as heuristics for simplifying the decision making process with many everyday problems.  While heuristics are valuable and often make our decision making faculties more efficient, they are often far less than optimal due to the fact that increased efficiency is often afforded by a reduction in accuracy.  Again, this is exactly what we expect to find with products of evolution — a suboptimal strategy for solving some problem or accomplishing some goal, but one that has worked well enough to give the organism (in this case, human beings) an advantage over the competition within some environmental niche.

So what kinds of cognitive biases do we have exactly, and how many of them have cognitive scientists discovered?  A good list of them can be found here.  I’m going to mention a few of them in this post, specifically those that promote or reinforce dogmatic thinking, those that promote or reinforce an appeal to a supernatural world view, and ultimately those that seem to most hinder overall intellectual development and progress.  To begin, I’d like to briefly discuss Cognitive Dissonance Theory and how it pertains to the automated management of our beliefs.

Cognitive Dissonance Theory

The human mind doesn’t tolerate internal conflicts very well, and so when we have beliefs that contradict one another or when we are exposed to new information that conflicts with an existing belief, some degree of cognitive dissonance results and we are effectively pushed out of our comfort zone.  The mind attempts to rid itself of this cognitive dissonance through a few different methods.  A person may alter the importance of the original belief or that of the new information, they may change the original belief, or they may seek evidence that is critical of the new information.  Generally, the easiest path for the mind to take is the first and last method mentioned here, as it is far more difficult for a person to change their existing beliefs, partly due to the fact that a person’s existing set of beliefs is their only frame of reference when encountering new information, and there is an innate drive to maintain a feeling of familiarity and a feeling of certainty of our beliefs.

The primary problem with these automated cognitive dissonance reduction methods is that they tend to cause people to defend their beliefs in one way or another rather than to question them and try to analyze them objectively.  Unfortunately, this means that we often fail to consider new evidence and information using a rational approach, and this in turn can cause people to acquire quite a large number of irrational, false beliefs, despite having a feeling of certainty regarding the truth of those beliefs.  It is also important to note that many of the cognitive biases that I’m about to mention result from these cognitive dissonance reduction methods, and they can become compounded to create severe lapses in judgement.

Confirmation Bias, Semmelweis Reflex, and The Frequency Illusion

One of the most significant cognitive biases we have is what is commonly referred to as confirmation bias.  Basically, this bias refers to our tendency to seek out, interpret, or remember information in a particular way that serves to confirm our beliefs.  To put it more simply, we often will only see what we want to see.  It is a method that our brain uses in order to be able to sift through large amounts of information and piece it together with what we already believe into a meaningful story line or explanation.  Just as we expect, it ultimately optimizes for efficiency over accuracy, and therein lies the problem.  Even though this bias applies to everyone, the dogmatist in particular has a larger cognitive barrier to overcome because they’re also using a fallacious epistemological methodology right from the start (i.e. appealing to some authority rather than to reason and evidence).  So while everyone is affected by this bias to some degree, the dogmatic believer in particular has an epistemological flaw that serves to compound the issue and make matters worse.  They will, to a much higher degree, live their life unconsciously ignoring any evidence encountered that refutes their beliefs (or fallaciously reinterpreting it to be in their favor), and they will rarely if ever attempt to actively seek out such evidence to try and disprove their beliefs.  A more rational thinker on the other hand, has a belief system primarily based on a reliable epistemological methodology (which uses empirical evidence to support it), and one that has been proven to work and provide increasingly accurate knowledge better than any other method (i.e. the scientific method).  Nevertheless, everyone is affected by this bias, and because it is operating outside the conscious mind, we all fail to notice it as it actively modifies our perception of reality.

One prominent example in our modern society, illustrating how this cognitive bias can reinforce dogmatic thinking (and with large groups of people), is the ongoing debate between Young Earth Creationists and the scientific consensus regarding evolutionary theory.  Even though the theory of evolution is a scientific fact (much like many other scientific theories, such as the theory of gravity, or the Germ theory of disease), and even though there are several hundred thousand scientists that can attest to its validity, as well as a plethora of evidence within a large number of scientific fields supporting its validity, Creationists seem to be in complete and utter denial of this actuality.  Not only do they ignore the undeniable wealth of evidence that is presented to them, but they also misinterpret evidence (or cherry pick) to suit their position.  This problem is compounded by the fact that their beliefs are only supported by fallacious tautologies [e.g. “It’s true because (my interpretation of) a book called the Bible says so…”], and other irrational arguments based on nothing more than a particular religious dogma and a lot of intellectual dishonesty.

I’ve had numerous debates with these kinds of people (and I used to BE one of them many years ago, so I understand how many of them arrived at these beliefs), and I’ll often quote several scientific sources and various logical arguments to support my claims (or to refute theirs), and it is often mind boggling to witness their response, with the new information seemingly going in one ear and coming out the other without undergoing any mental processing or critical consideration.  It is as if they didn’t hear a single argument that was pointed out to them and merely executed some kind of rehearsed reflex.  The futility of the communication is often confirmed when one finds themselves having to repeat the same arguments and refutations over and over again, seemingly falling on deaf ears, with no logical rebuttal of the points made.  On a side note, this reflex-like response where a person quickly rejects new evidence because it contradicts their established belief system is known as the “Semmelweis reflex/effect”, but it appears to be just another form of confirmation bias.  Some of these cases of denial and irrationality are nothing short of ironic, since these people are living in a society that owes its technological advancements exclusively to rational, scientific methodologies, and these people are indeed patronizing and utilizing many of these benefits of science everyday of their lives (even if they don’t realize it).  Yet we still find many of them hypocritically abhorring or ignoring science and reason whenever it is convenient to do so, such as when they try to defend their dogmatic beliefs.

Another prominent example of confirmation bias reinforcing dogmatic thinking relates to various other beliefs in the supernatural.  People that believe in the efficacy of prayer, for example, will tend to remember prayers that were “answered” and forget or rationalize away any prayers that weren’t “answered”, since their beliefs reinforce such a selective memory.  Similarly, if a plane crash or other disaster occurs, some people with certain religious beliefs will often mention or draw attention to the idea that their god or some supernatural force must have intervened or played a role in preventing the death of any survivors (if there are any), while they seem to downplay or ignore the facts pertaining to the many others that did not survive (if there are any survivors at all).  In the case of prayer, numerous studies have shown that prayer for another person (e.g. to heal them from an illness) is ineffective when that person doesn’t know that they’re being prayed for, thus any efficacy of prayer has been shown to be a result of the placebo effect and nothing more.  It may be the case that prayer is one of the most effective placebos, largely due to the incredibly high level of belief in its efficacy, and the fact that there is no expected time frame for it to “take effect”.  That is, since nobody knows when a prayer will be “answered”, then even if the prayer isn’t “answered” for several months or even several years (and time ranges like this are not unheard of for many people that have claimed to have prayers answered), then confirmation bias will be even more effective than a traditional medical placebo.  After all, a typical placebo pill or treatment is expected to work within a reasonable time frame comparable to other medicine or treatments taken in the past, but there’s no deadline for a prayer to be answered by.  It’s reasonable to assume that even if these people were shown the evidence that prayer is no more effective than a placebo (even if it is the most effective placebo available), they would reject it or rationalize it away, once again, because their beliefs require it to be so.  The same bias applies to numerous other purportedly paranormal phenomena, where people see significance in some event because of how their memory or perception is operating in order to promote or sustain their beliefs.  As mentioned earlier, we often see what we want to see.

There is also a closely related bias known as congruence bias, which occurs because people rely too heavily on directly testing a given hypothesis, and often neglect to indirectly test that hypothesis.  For example, suppose that you were introduced to a new lighting device with two buttons on it, a green button and a red button.  You are told that the device will only light up by pressing the green button.  A direct test of this hypothesis would be to press the green button, and see if it lights up.  An indirect test of this hypothesis would be to press the red button, and see if it doesn’t light up.  Congruence bias illustrates that we tend to avoid the indirect testing of hypotheses, and thus we can start to form irrational beliefs by mistaking correlation with causation, or by forming incomplete explanations of causation.  In the case of the aforementioned lighting device, it could be the case that both buttons cause it to light up.  Think about how this congruence bias affects our general decision making process, where when we combine it with our confirmation bias, we are inclined to not only reaffirm our beliefs, but to avoid trying to disprove them (since we tend to avoid indirect testing of those beliefs).  This attitude and predisposition reinforces dogmatism by assuming the truth of one’s beliefs and not trying to verify them in any rational, critical way.

An interesting cognitive bias that often works in conjunction with a person’s confirmation bias is something referred to as the frequency illusion, whereby some detail of an event or some specific object may enter a person’s thoughts or attention, and then suddenly it seems that they are experiencing the object or event at a higher than normal frequency.  For example, if a person thinks about a certain animal, say a turtle, they may start noticing lots of turtles around them that they would have normally overlooked.  This person may even go to a store and suddenly notice clothing or other gifts with turtle patterns or designs on them that they didn’t seem to notice before.  After all, “turtle” is on their mind, or at least in the back of their mind, so their brain is unconsciously “looking” for turtles, and the person isn’t aware of their own unconscious pattern recognition sensitivity.  As a result, they may think that this perceived higher frequency of “seeing turtles” is abnormal and that it must be more than simply a coincidence.  If this happens to a person that appeals to the supernatural, their confirmation bias may mistake this frequency illusion for a supernatural event, or something significant.  Since this happens unconsciously, people can’t control this illusion or prevent it from happening.  However, once a person is aware of the frequency illusion as a cognitive bias that exists, they can at least reassess their experiences with a larger toolbox of rational explanations, without having to appeal to the supernatural or other irrational belief systems.  So in this particular case, we can see how various cognitive biases can “stack up” with one another and cause serious problems in our reasoning abilities and negatively affect how accurately we perceive reality.

To read part 2 of 3, click here.

An Evolved Consciousness Creating Conscious Evolution

Two Evolutionary Leaps That Changed It All

As I’ve mentioned in a previous post, human biological evolution has led to the emergence of not only consciousness but also a co-existing yet semi-independent cultural evolution (through the unique evolution of the human brain).  This evolutionary leap has allowed us to produce increasingly powerful technologies which in turn have provided a means for circumventing many natural selection pressures that our physical bodies would otherwise be unable to handle.

One of these technologies has been the selective breeding of plants and animals, with this process often referred to as “artificial” selection, as opposed to “natural” selection since human beings have served as an artificial selection pressure (rather than the natural selection pressures of the environment in general).  In the case of our discovery of artificial selection, by choosing which plants and animals to cultivate and raise, we basically just catalyzed the selection process by providing a selection pressure based on the plant or animal traits that we’ve desired most.  By doing so, rather than the selection process taking thousands or even millions of years to produce what we have today (in terms of domesticated plants and animals), it only took a minute fraction of that time since it was mediated through a consciously guided or teleological process, unlike natural selection which operates on randomly differentiating traits leading to differential reproductive success (and thus new genomes and species) over time.

This second evolutionary leap (artificial selection that is) has ultimately paved the way for civilization, as it has increased the landscape of our diet and thus our available options for food, and the resultant agriculture has allowed us to increase our population density such that human collaboration, complex distribution of labor, and ultimately the means for creating new and increasingly complex technologies, have been made possible.  It is largely because of this new evolutionary leap that we’ve been able to reach the current pinnacle of human evolution, the newest and perhaps our last evolutionary leap, or what I’ve previously referred to as “engineered selection”.

With artificial selection, we’ve been able to create new species of plants and animals with very unique and unprecedented traits, however we’ve been limited by the rate of mutations or other genomic differentiating mechanisms that must arise in order to create any new and desirable traits. With engineered selection, we can simply select or engineer the genomic sequences required to produce the desired traits, effectively allowing us to circumvent any genomic differentiation rate limitations and also allowing us instant access to every genomic possibility.

Genetic Engineering Progress & Applications

After a few decades of genetic engineering research, we’ve gained a number of capabilities including but not limited to: producing recombinant DNA, producing transgenic organisms, utilizing in vivo trans-species protein production, and even creating the world’s first synthetic life form (by adding a completely synthetic or human-constructed bacterial genome to a cell containing no DNA).  The plethora of potential applications for genetic engineering (as well as those applications currently in use) has continued to grow as scientists and other creative thinkers are further discovering the power and scope of areas such as mimetics, micro-organism domestication, nano-biomaterials, and many other inter-related niches.

Domestication of Genetically Engineered Micro and Macro-organisms

People have been genetically modifying plants and animals for the same reasons they’ve been artificially selecting them — in order to produce species with more desirable traits. Plants and animals have been genetically engineered to withstand harsher climates, resist harmful herbicides or pesticides (or produce their own pesticides), produce more food or calories per acre (or more nutritious food when all else is equal), etc.  Plants and animals have also been genetically modified for the purposes of “pharming”, where substances that aren’t normally produced by the plant or animal (e.g. pharmacological substances, vaccines, etc.) are expressed, extracted, and then purified.

One of the most compelling applications of genetic engineering within agriculture involves solving the “omnivore’s dilemma”, that is, the prospect of growing unconscious livestock by genetically inhibiting the development of certain parts of the brain so that the animal doesn’t experience any pain or suffering.  There have also been advancements made with in vitro meat, that is, producing cultured meat cells so that no actual animal is needed at all other than some starting cells taken painlessly from live animals (which are then placed into a culture media to grow into larger quantities of meat), however it should be noted that this latter technique doesn’t actually require any genetic modification, although genetic modification may have merit in improving these techniques.  The most important point here is that these methods should decrease the financial and environmental costs of eating meat, and will likely help to solve the ethical issues regarding the inhumane treatment of animals within agriculture.

We’ve now entered a new niche regarding the domestication of species.  As of a few decades ago, we began domesticating micro-organisms. Micro-organisms have been modified and utilized to produce insulin for diabetics as well as other forms of medicine such as vaccines, human growth hormone, etc.  There have also been certain forms of bacteria genetically modified in order to turn cellulose and other plant material directly into hydrocarbon fuels.  This year (2014), E. coli bacteria have been genetically modified in order to turn glucose into pinene (a high energy hydrocarbon used as a rocket fuel).  In 2013, researchers at the University of California, Davis, genetically engineered cyanobacteria (a.k.a. blue-green algae) by adding particular DNA sequences to its genome which coded for specific enzymes such that it can use sunlight and the process of photosynthesis to turn CO2 into 2,3 butanediol (a chemical that can be used as a fuel, or to make paint, solvents, and plastics), thus producing another means of turning our over abundant carbon emissions back into fuel.

On a related note, there are also efforts underway to improve the efficiency of certain hydro-carbon eating bacteria such as A. borkumensis in order to clean up oil spills even more effectively.  Imagine one day having the ability to use genetically engineered bacteria to directly convert carbon emissions back into mass-produced fuel, and if the fuel spills during transport, also having the counterpart capability of cleaning it up most efficiently with another form of genetically engineered bacteria.  These capabilities are being further developed and are only the tip of the iceberg.

In theory, we should also be able to genetically engineer bacteria to decompose many other materials or waste products that ordinarily decompose extremely slowly. If any of these waste products are hazardous, bacteria could be genetically engineered to breakdown or transform the waste products into a safe and stable compound.  With these types of solutions we can make many new materials and have a method in line for their proper disposal (if needed).  Additionally, by utilizing some techniques mentioned in the next section, we can also start making more novel materials that decompose using non-genetically-engineered mechanisms.

It is likely that genetically modified bacteria will continue to provide us with many new types of mass-produced chemicals and products. For those processes that do not work effectively (if at all) in bacterial (i.e. prokaryotic) cells, then eukaryotic cells such as yeast, insect cells, and mammalian cells can often be used as a viable option. All of these genetically engineered domesticated micro-organisms will likely be an invaluable complement to the increasing number of genetically modified plants and animals that are already being produced.

Mimetics

In the case of mimetics, scientists are discovering new ways of creating novel materials using a bottom-up approach at the nano-scale by utilizing some of the self-assembly techniques that natural selection has near-perfected over millions of years.  For example, mollusks form sea shells with incredibly strong structural/mechanical properties by their DNA coding for the synthesis of specific proteins, and those proteins bonding the raw materials of calcium and carbonate into alternating layers until a fully formed shell is produced.  The pearls produced by clams are produced with similar techniques. We could potentially use the same DNA sequence in combination with a scaffold of our choosing such that a similar product is formed with unique geometries, or through genetic engineering techniques, we could modify the DNA sequence so that it performs the same self-assembly with completely different materials (e.g. silicon, platinum, titanium, polymers, etc.).

By combining the capabilities of scaffolding as well as the production of unique genomic sequences, one can further increase the number of possible nanomaterials or nanostructures, although I’m confident that most if not all scaffolding needs could eventually be accomplished by the DNA sequence alone (much like the production of bone, exoskeleton, and other types of structural tissues in animals).  The same principles can be applied by looking at how silk is produced by spiders, how the cochlear hair cells are produced in mammals, etc.  Many of these materials are stronger, lighter, and more defect-free than some of the best human products ever engineered.  By mimicking and modifying these DNA-induced self-assembly techniques, we can produce entirely new materials with unprecedented properties.

If we realize that even the largest plants and animals use these same nano-scale assembly processes to build themselves, it isn’t hard to imagine using these genetic engineering techniques to effectively grow complete macro-scale consumer products.  This may sound incredibly unrealistic with our current capabilities, but imagine one day being able to grow finished products such as clothing, hardware, tools, or even a house.  There are already people working on these capabilities to some degree (for example using 3D printed scaffolding or other scaffolding means and having plant or animal tissue grow around it to form an environmentally integrated bio-structure).  If this is indeed realizable, then perhaps we could find a genetic sequence to produce almost anything we want, even a functional computer or other device.  If nature can use DNA and natural selection to produce macro-scale organisms with brains capable of pattern recognition, consciousness, and computation (and eventually the learned capability of genetic engineering in the case of the human brain), then it seems entirely reasonable that we could eventually engineer DNA sequences to produce things with at least that much complexity, if not far higher complexity, and using a much larger selection of materials.

Other advantages from using such an approach include the enormous energy savings gained by adopting the naturally selected economically efficient process of self-assembly (including less changes in the forms of energy used, and thus less loss) and a reduction in specific product manufacturing infrastructure. That is, whereas we’ve typically made industrial scale machines individually tailored to produce specific components which are later assembled into a final product, by using DNA (and the proteins it codes for) to do the work for us, we will no longer require nearly as much manufacturing capital, for the genetic engineering capital needed to produce any genetic sequence is far more versatile.

Transcending the Human Species

Perhaps the most important application of genetic engineering will be the modification of our own species.  Many of the world’s problems are caused by sudden environmental changes (many of them anthropogenic), and if we can change ourselves and/or other species biologically in order to adapt to these unexpected and sudden environmental changes (or to help prevent them altogether), then the severity of those problems can be reduced or eliminated.  In a sense, we would be selecting our own as well as other species by providing the proper genes to begin with, rather than relying on extremely slow genomic differentiation mechanisms and the greater rates of suffering and loss of life that natural selection normally follows.

Genetic Enhancement of Existing Features

With power over the genome, we may one day be able to genetically increase our life expectancy, for example, by modifying the DNA polymerase-g enzyme in our mitochondria such that they make less errors (i.e. mutations) during DNA replication, by genetically altering telomeres in our nuclear DNA such that they can maintain their length and handle more mitotic divisions, or by finding ways to preserve nuclear DNA, etc. If we also determine which genes lead to certain diseases (as well as any genes that help to prevent them), genetic engineering may be the key to extending the length of our lives perhaps indefinitely.  It may also be the key to improving the quality of that extended life by replacing the techniques we currently use for health and wellness management (including pharmaceuticals) with perhaps the most efficacious form of preventative medicine imaginable.

If we can optimize our brain’s ability to perform neuronal regeneration, reconnection, rewiring, and/or re-weighting based on the genetic instructions that at least partially mediate these processes, this optimization should drastically improve our ability to learn by improving the synaptic encoding and consolidation processes involved in memory and by improving the combinatorial operations leading to higher conceptual complexity.  Thinking along these lines, by increasing the number of pattern recognition modules that develop in the neo-cortex, or by optimizing their configuration (perhaps by increasing the number of hierarchies), our general intelligence would increase as well and would be an excellent complement to an optimized memory.  It seems reasonable to assume that these types of cognitive changes will likely have dramatic effects on how we think and thus will likely affect our philosophical beliefs as well.  Religious beliefs are also likely to change as the psychological comforts provided by certain beliefs may no longer be as effective (if those comforts continue to exist at all), especially as our species continues to phase out non-naturalistic explanations and beliefs as a result of seeing the world from a more objective perspective.

If we are able to manipulate our genetic code in order to improve the mechanisms that underlie learning, then we should also be able to alter our innate abilities through genetic engineering. For example, what if infants could walk immediately after birth (much like a newborn calf)? What if infants had adequate motor skills to produce (at least some) spoken language much more quickly? Infants normally have language acquisition mechanisms which allow them to eventually learn language comprehension and productivity but this typically takes a lot of practice and requires their motor skills to catch up before they can utter a single word that they do in fact understand. Circumventing the learning requirement and the motor skill developmental lag (at least to some degree) would be a phenomenal evolutionary advancement, and this type of innate enhancement could apply to a large number of different physical skills and abilities.

Since DNA ultimately controls the types of sensory receptors we have, we should eventually be able to optimize these as well.  For example, photoreceptors could be modified such that we would be able to see new frequencies of electro-magnetic radiation (perhaps a more optimized range of frequencies if not a larger range altogether).  Mechano-receptors of all types could be modified, for example, to hear a different if not larger range of sound frequencies or to increase tactile sensitivity (i.e. touch).  Olfactory or gustatory receptors could also be modified in order to allow us to smell and taste previously undetectable chemicals.  Basically, all of our sensations could be genetically modified and, when combined with the aforementioned genetic modifications to the brain itself, this would allow us to have greater and more optimized dimensions of perception in our subjective experiences.

Genetic Enhancement of Novel Features

So far I’ve been discussing how we may be able to use genetic engineering to enhance features we already possess, but there’s no reason we can’t consider using the same techniques to add entirely new features to the human repertoire. For example, we could combine certain genes from other animals such that we can re-grow damaged limbs or organs, have gills to breathe underwater, have wings in order to fly, etc.  For that matter, we may even be able to combine certain genes from plants such that we can produce (at least some of) our own chemical energy from the sun, that is, create at least partially photosynthetic human beings.  It is certainly science fiction at the moment, but I wouldn’t discount the possibility of accomplishing this one day after considering all of the other hybrid and transgenic species we’ve created already, and after considering the possible precedent mentioned in the endosymbiotic theory (where an ancient organism may have “absorbed” another to produce energy for it, e.g. mitochondria and chloroplasts in eukaryotic cells).

Above and beyond these possibilities, we could also potentially create advanced cybernetic organisms.  What if we were able to integrate silicon-based electronic devices (or something more biologically compatible if needed) into our bodies such that the body grows or repairs some of these technologies using biological processes?  Perhaps if the body is given the proper diet (i.e. whatever materials are needed in the new technological “organ”) and has the proper genetic code such that the body can properly assimilate those materials to create entirely new “organs” with advanced technological features (e.g. wireless communication or wireless access to an internet database activated by particular thoughts or another physiological command cue), we may eventually be able to get rid of external interface hardware and peripherals altogether.  It is likely that electronic devices will first become integrated into our bodies through surgical implantation in order to work with our body’s current hardware (including the brain), but having the body actually grow and/or repair these devices using DNA instruction would be the next logical step of innovation if it is eventually feasible.

Malleable Human Nature

When people discuss complex issues such as social engineering, sustainability, crime-reduction, etc., it is often mentioned that there is a fundamental barrier between our current societal state and where we want or need to be, and this barrier is none other than human nature itself.  Many people in power have tried to change human behavior with brute force while operating under the false assumption that human beings are analogous to some kind of blank slate that can simply learn or be conditioned to behave in any way without limits. This denial of human nature (whether implicit or explicit) has led to a lot of needless suffering and has also led to the de-synchronization of biological and cultural evolution.

Humans often think that they can adapt to any cultural change, but we often lose sight of the detrimental power that technology and other cultural inventions and changes can have over our physiological and psychological well-being. In a nutshell, the speed of cultural evolution can often make us feel like a fish out of water, perhaps better suited to live in an environment closer to our early human ancestors.  Whatever the case, we must embrace human nature and realize that our efforts to improve society (or ourselves) will only have long term efficacy if we work with human nature rather than against it.  So what can we do if our biological evolution is out-of-sync with our cultural evolution?  And what can we do if we have no choice but to accept human nature, that is, our (often selfish) biologically-driven motivations, tendencies, etc.?  Once again, genetic engineering may provide a solution to many of these previously insoluble problems.  To put it simply, if we can change our genome as desired, then we may be able to not only synchronize our biological and cultural evolution, but also change human nature itself in the process.  This change could not only make us feel better adjusted to the modern cultural environment we’re living in, but it could also incline us to instinctually behave in ways that are more beneficial to each other and to the world as a whole.

It’s often said that we have selfish genes in some sense, that is, many if not all of our selfish behaviors (as well as instinctual behaviors in general) are a reflection of the strategy that genes implement in their vehicles (i.e. our bodies) in order for the genes to maintain themselves and reproduce.  That genes possess this kind of strategy does not require us to assume that they are conscious in any way or have actual goals per se, but rather that natural selection simply selects genes that code for mechanisms which best maintain and spread those very genes.  Natural selection tends toward effective self-replicators, and that’s why “selfish” genes (in large part) cause many of our behaviors.  Improving reproductive fitness and successful reproduction has been the primary result of this strategy and many of the behaviors and motivations that were most advantageous to accomplish this are no longer compatible with modern culture including the long-term goals and greater good that humans often strive for.

Humans no longer exclusively live under the law of the jungle or “survival of the fittest” because our humanistic drives and their cultural reinforcements have expanded our horizons beyond simple self-preservation or a Machiavellian mentality.  Many humans have tried to propagate principles such as honesty, democracy, egalitarianism, immaterialism, sustainability, and altruism around the world, and they are often high-jacked by our often short-sighted sexual and survival-based instinctual motivations to gain sexual mates, power, property, a higher social status, etc.  Changing particular genes should also allow us to change these (now) disadvantageous aspects of human nature and as a result this would completely change how we look at every problem we face. No longer would we have to say “that solution won’t work because it goes against human nature”, or “the unfortunate events in human history tend to recur in one way or another because humans will always…”, but rather we could ask ourselves how we want or need to be and actually make it so by changing our human nature. Indeed, if genetic engineering is used to accomplish this, history would no longer have to repeat itself in the ways that we abhor. It goes without saying that a lot of our behavior can be changed for the better by an appropriate form of environmental conditioning, but for those behaviors that can’t be changed through conditioning, genetic engineering may be the key to success.

To Be or Not To Be?

It seems that we have been given a unique opportunity to use our ever increasing plethora of experiential data and knowledge and combine it with genetic engineering techniques to engineer a social organism that is by far the best adapted to its environment.  Additionally, we may one day find ourselves living in a true global utopia, if the barriers of human nature and the de-synchronization of biological and cultural evolution are overcome, and genetic engineering may be the only way of achieving such a goal.  One extremely important issue that I haven’t mentioned until now is the ethical concerns regarding the continued use and development of genetic engineering technology.  There are obviously concerns over whether or not we should even be experimenting with this technology.  There are many reasonable arguments both for and against using this technology, but I think that as a species, we have been driven to manipulate our environment in any way that we are capable of and this curiosity is a part of human nature itself.  Without genetic engineering, we can’t change any of the negative aspects of human nature but can only let natural selection run its course to modify our species slowly over time (for better or for worse).

If we do accept this technology, there are other concerns such as the fact that there are corporations and interested parties that want to use genetic engineering primarily if not exclusively for profit gain (often at the expense of actual universal benefits for our species) and which implement questionable practices like patenting plant and animal food sources in a potentially monopolized future agricultural market.  Perhaps an even graver concern is the potential to patent genes that become a part of the human genome, and the (at least short term) inequality that would ensue from the wealthier members of society being the primary recipients of genetic human enhancement. Some people may also use genetic engineering to create new bio-warfare weaponry and find other violent or malicious applications.  Some of these practices could threaten certain democratic or other moral principles and we need to be extremely cautious with how we as a society choose to implement and regulate this technology.  There are also numerous issues regarding how these technologies will affect the environment and various ecosystems, whether caused by people with admirable intentions or not.  So it is definitely prudent that we proceed with caution and get the public heavily involved with this cultural change so that our society can move forward as responsibly as possible.

As for the feasibility of the theoretical applications mentioned earlier, it will likely be computer simulation and computing power that catalyze the knowledge base and capability needed to realize many of these goals (by decoding the incredibly complex interactions between genes and the environment) and thus will likely be the primary limiting factor. If genetic engineering also involves expanding the DNA components we have to work with, for example, by expanding our base-four system (i.e. four nucleotides to choose from) to a higher based system through the use of other naturally occurring nucleotides or even the use of UBPs (i.e. “Unnatural Base Pairs”), while still maintaining low rates of base-pair mismatching and while maintaining adequate genetic information processing rates, we may be able to utilize previously inaccessible capabilities by increasing the genetic information density of DNA.  If we can overcome some of the chemical natural selection barriers that were present during abiogenesis and the evolution of DNA (and RNA), and/or if we can change the very structure of DNA itself (as well as the proteins and enzymes that are required for its implementation), we may be able to produce an entirely new type of genetic information storage and processing system, potentially circumventing many of the limitations of DNA in general, and thus creating a vast array of new species (genetically coded by a different nucleic acid or other substance).  This type of “nucleic acid engineering”, if viable, may complement the genetic engineering we’re currently performing on DNA and help us to further accomplish some of the aforementioned goals and applications.

Lastly, while some of the theoretical applications of genetic engineering that I’ve presented in this post may not sound plausible at all to some, I think it’s extremely important and entirely reasonable (based on historical precedent) to avoid underestimating the capabilities of our species.  We may one day be able to transform ourselves into whatever species we desire, effectively taking us from trans-humanism to some perpetual form of conscious evolution and speciation.  What I find most beautiful here is that the evolution of consciousness has actually led to a form of conscious evolution. Hopefully our species will guide this evolution in ways that are most advantageous to our species, and to the entire diversity of life on this planet.