Neuroscience Arms Race & Our Changing World View

At least since the time of Hippocrates, people began to realize that the brain was the physical correlate of consciousness and thought.  Since then, the fields of psychology, neuroscience, and several inter-related fields have emerged.  There have been numerous advancements made within the field of neuroscience during the last decade or so, and in that same time frame there has also been an increased interest in the social, religious, philosophical, and moral implications that have precipitated from such a far-reaching field.  Certainly the medical knowledge we’ve obtained from the neurosciences has been the primary benefit of such research efforts, as we’ve learned quite a bit more about how the brain works, how it is structured, and the ongoing neuropathology that has led to improvements in diagnosing and treating various mental illnesses.  However, it is the other side of neuroscience that I’d like to focus on in this post — the paradigm shift relating to how we are starting to see the world around us (including ourselves), and how this is affecting our goals as well as how to achieve them.

Paradigm Shift of Our World View

Aside from the medical knowledge we are obtaining from the neurosciences, we are also gaining new perspectives on what exactly the “mind” is.  We’ve come a long way in demonstrating that “mental” or “mind” states are correlated with physical brain states, and there is an ever growing plethora of evidence which suggests that these mind states are in fact caused by these brain states.  It should come as no surprise then that all of our thoughts and behaviors are also caused by these physical brain states.  It is because of this scientific realization that society is currently undergoing an important paradigm shift in terms of our world view.

If all of our thoughts and behaviors are mediated by our physical brain states, then many everyday concepts such as thinking, learning, personality, and decision making can take on entirely new meanings.  To illustrate this point, I’d like to briefly mention the well known “nature vs. nurture” debate.  The current consensus among scientists is that people (i.e. their thoughts and behavior) are ultimately products of both their genes and their environment.

Genes & Environment

From a neuroscientific perspective, the genetic component is accounted for by noting that genes have been shown to play a very large role in directing the initial brain wiring schema of an individual during embryological development and through gestation.  During this time, the brain is developing very basic instinctual behavioral “programs” which are physically constituted by vastly complex neural networks, and the body’s developing sensory organs and systems are also connected to particular groups of these neural networks.  These complex neural networks, which have presumably been naturally selected for in order to benefit the survival of the individual, continue being constructed after gestation and throughout the entire ontogenic evolution of the individual (albeit to lesser degrees over time).

As for the environmental component, this can be further split into two parts: the internal and the external environment.  The internal environment within the brain itself, including various chemical concentration gradients partly mediated by random Brownian motion, provides some gene expression constraints as well as some additional guidance to work with the genetic instructions to help guide neuronal growth, migration, and connectivity.  The external environment, consisting of various sensory stimuli, seems to modify this neural construction by providing a form of inputs which may cause the constituent neurons within these neural networks to change their signal strength, change their action potential threshold, and/or modify their connections with particular neurons (among other possible changes).

Causal Constraints

This combination of genetic instructions and environmental interaction and input produces a conscious, thinking, and behaving being through a large number of ongoing and highly complex hardware changes.  It isn’t difficult to imagine why these insights from neuroscience might modify our conventional views of concepts such as thinking, learning, personality, and decision making.  Prior to these developments over the last few decades, the brain was largely seen as a sort of “black box”, with its internal milieu and functional properties remaining mysterious and inaccessible.  From that time and prior to it, for millennia, many people have assumed that our thoughts and behaviors were self-caused or causa sui.  That is, people believed that they themselves (i.e. some causally free “consciousness”, or “soul”, etc.) caused their own thoughts and behavior as opposed to those thoughts and behaviors being ultimately caused by physical processes (e.g. neuronal activity, chemical reactions, etc.).

Neuroscience (as well as biochemistry and its underlying physics) has shed a lot of light on this long-held assumption and, as it stands, the evidence has shown this prior assumption to be false.  The brain is ultimately controlled by the laws of physics since every chemical reaction and neural event that physically produces our thoughts, choices, and behaviors, have never been shown to be causally free from these physically guiding constraints.  I will mention that quantum uncertainty or quantum “randomness” (if ontologically random) does provide some possible freedom from physical determinism.  However, these findings from quantum physics do not provide any support for self-caused thoughts or behaviors.  Rather, it merely shows that those physically constrained thoughts and behaviors may never be completely predictable by physical laws no matter how much data is obtained.  In other words, our thoughts and behaviors are produced by highly predictable (although not necessarily completely predictable) physical laws and constraints as well as some possible random causal factors.

As a result of these physical causal constraints, the conventional perspective of an individual having classical free will has been shattered.  Our traditional views of human attributes including morality, choices, ideology, and even individualism are continuing to change markedly.  Not surprisingly, there are many people uncomfortable with these scientific discoveries including members of various religious and ideological groups that are largely based upon and thus depend on the very presupposition of precepts such as classical free will and moral responsibility.  The evidence that is compiling from the neurosciences is in fact showing that while people are causally responsible for their thoughts, choices, and behavior (i.e. an individual’s thoughts and subsequent behavior are constituents of a causal chain of events), they are not morally responsible in the sense that they can choose to think or behave any differently than they do, for their thoughts and behavior are ultimately governed by physically constrained neural processes.

New World View

Now I’d like to return to what I mentioned earlier and consider how these insights from neuroscience may be drastically modifying how we look at concepts such as thinking, learning, personality, and decision making.  If our brain is operating via these neural network dynamics, then conscious thought appears to be produced by a particular subset of these neural network configurations and processes.  So as we continue to learn how to more directly control or alter these neural network arrangements and processes (above and beyond simply applying electrical potentials to certain neural regions in order to bring memories or other forms of imagery into consciousness, as we’ve done in the past), we should be able to control thought generation from a more “bottom-up” approach.  Neuroscience is definitely heading in this direction, although there is a lot of work to be done before we have any considerable knowledge of and control over such processes.

Likewise, learning seems to consist of a certain type of neural network modification (involving memory), leading to changes in causal pattern recognition (among other things) which results in our ability to more easily achieve our goals over time.  We’ve typically thought of learning as the successful input, retention, and recall of new information, and we have been achieving this “learning” process through the input of environmental stimuli via our sensory organs and systems.  In the future, it may be possible to once again, as with the aforementioned bottom-up thought generation, physically modify our neural networks to directly implant memories and causal pattern recognition information in order to “learn” without any actual sensory input, and/or we may be able to eventually “upload” information in a way that bypasses the typical sensory pathways thus potentially allowing us to catalyze the learning process in unprecedented ways.

If we are one day able to more directly control the neural configurations and processes that lead to specific thoughts as well as learned information, then there is no reason that we won’t be able to modify our personalities, our decision-making abilities and “algorithms”, etc.  In a nutshell, we may be able to modify any aspect of “who” we are in extraordinary ways (whether this is a “good” or “bad” thing is another issue entirely).  As we come to learn more about the genetic components of these neural processes, we may also be able to use various genetic engineering techniques to assist with the necessary neural modifications required to achieve these goals.  The bottom line here is that people are products of their genes and environment, and by manipulating both of those causal constraints in more direct ways (e.g. through the use of neuroscientific techniques), we may be able to achieve previously unattainable abilities and perhaps in a relatively miniscule amount of time.  It goes without saying that these methods will also significantly affect our evolutionary course as a species, allowing us to enter new landscapes through our substantially enhanced ability to adapt.  This may be realized through these methods by finding ways to improve our intelligence, memory, or other cognitive faculties, effectively giving us the ability to engineer or re-engineer our brains as desired.

Neuroscience Arms Race

We can see that increasing our knowledge and capabilities within the neurosciences has the potential for drastic societal changes, some of which are already starting to be realized.  The impact that these fields will have on how we approach the problem of criminal, violent, or otherwise undesirable behavior can not be overstated.  Trying to correct these issues by focusing our efforts on the neural or cognitive substrate that underlie them, as opposed to using less direct and more external means (e.g. social engineering methods) that we’ve been using thus far, may lead to much less expensive solutions as well as solutions that may be realized much, much more quickly.

As with any scientific discovery or subsequent technology produced from it, neuroscience has the power to bestow on us both benefits as well as disadvantages.  I’m reminded of the ground-breaking efforts made within nuclear physics several decades ago, whereby physicists not only gained precious information about subatomic particles (and their binding energies) but also how to release these enormous amounts of energy from nuclear fusion and fission reactions.  It wasn’t long after these breakthrough discoveries were made before they were used by others to create the first atomic bombs.  Likewise, while our increasing knowledge within neuroscience has the power to help society improve by optimizing our brain function and behavior, it can also be used by various entities to manipulate the populace for unethical reasons.

For example, despite the large number of free market proponents who claim that the economy need not be regulated by anything other than rational consumers and their choices of goods and services, corporations have clearly increased their use of marketing strategies that take advantage of many humans’ irrational tendencies (whether it is “buy one get one free” offers, “sales” on items that have artificially raised prices, etc.).  Politicians and other leaders have been using similar tactics by taking advantage of voters’ emotional vulnerabilities on certain controversial issues that serve as nothing more than an ideological distraction in order to reduce or eliminate any awareness or rational analysis of the more pressing issues.

There are already research and development efforts being made by these various entities in order to take advantage of these findings within neuroscience such that they can have greater influence over people’s decisions (whether it relates to consumers’ purchases, votes, etc.).  To give an example of some of these R&D efforts, it is believed that MRI (Magnetic Resonance Imaging) or fMRI (functional Magnetic Resonance Imaging) brain scans may eventually be able to show useful details about a person’s personality or their innate or conditioned tendencies (including compulsive or addictive tendencies, preferences for certain foods or behaviors, etc.).  This kind of capability (if realized) would allow marketers to maximize how many dollars they can squeeze out of each consumer by optimizing their choices of goods and services and how they are advertised. We have already seen how purchases made on the internet, if tracked, begin to personalize the advertisements that we see during our online experience (e.g. if you buy fishing gear online, you may subsequently notice more advertisements and pop-ups for fishing related goods and services).  If possible, the information found using these types of “brain probing” methods could be applied to other areas, including that of political decision making.

While these methods derived from the neurosciences may be beneficial in some cases, for instance, by allowing the consumer more automated access to products that they may need or want (which will likely be a selling point used by these corporations for obtaining consumer approval of such methods), it will also exacerbate unsustainable consumption and other personal or societally destructive tendencies and it is likely to continue to reduce (or eliminate) whatever rational decision making capabilities we still have left.

Final Thoughts

As we can see, neuroscience has the potential to (and is already starting to) completely change the way we look at the world.  Further advancements in these fields will likely redefine many of our goals as well as how to achieve them.  It may also allow us to solve many problems that we face as a species, far beyond simply curing mental illnesses or ailments.  The main question that comes to mind is:  Who will win the neuroscience arms race?  Will it be those humanitarians, scientists, and medical professionals that are striving to accumulate knowledge in order to help solve the problems of individuals and societies as well as to increase their quality of life?  Or will it be the entities that are trying to accumulate similar knowledge in order to take advantage of human weaknesses for the purposes of gaining wealth and power, thus exacerbating the problems we currently face?